搜索资源列表
XCSR_DE1.0
- - XCS for Dynamic Environments + Continuous versions of XCS + Test problem: real multiplexer + Experiments: XCS is explored in dynamic environments with different magnitudes of change to the underlying concepts. +Reference papers: H.H.
KnapsackProblem
- 这是典型的背包问题的测试集,可以在在程序编辑的时候使用这个来进行测试-This is a typical knapsack problem in the test set, in the process of editing to the use of the test
Eight_Num_Fengart
- 本代码是为了应付人工智能的实验而编写的,写的潦草请不要介意。我又是通过这代码来“引玉”,相信看过我编写的黑白棋源代码的人应该知道“引玉”是什么意思。如果你有“玉”(什么更高效的算法能在更短的时间内求得结果,或者博弈方面的),就欢迎“砸”过来--fengart@126.com,我会很感激!(A* 算法解决八数码问题我已经研究过了,不要砸这个来)在 赛扬D2.1G 的机器上测试,算法的解答时间不超过0.1秒。 最好优先搜索算法的解答时间一般在0.05秒左右。 里面还可以演示八数码问题的从初始态到目标
rcc8-csp-solving
- 利用空间表示的rcc8模型进行空间推理, 解决csp问题,可以自动产生csp问题,然后解决,利用了不同的算法并且做了比较,有仿真试验。-said that the use of space rcc8 model spatial reasoning, problem solving csp. csp can be generated automatically, and then resolved, the use of different algorithms and made a comp
DGPSO.rar
- 用于求解约束优化问题的算法,算法为差分进化/遗传算法/微粒群算法的融合。对于“[7] T. P. Runarsson and X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE Trans. Evol. Comput., vol. 4, no. 3, pp. 284-294, Sep. 2000”中给出的13个标准测试函数,均能得到问题最优解。如有任何疑问,请于http://2shi.phphube
Bayes
- 一个比较简单的模式识别问题。用female.txt 和male.txt 的数据作为训练样本集,建立Bayes 分类器,用测试样本数据set1.txt、set2.txt、set3.txt 对该分类器进行测试,分别应用单个特征及两个特征进行实验-A relatively simple pattern recognition problem. Female.txt and male.txt use data as a training sample set, the establishment of
Knapsack
- 用遗传算法解决01背包问题,内附测试数据。-Using genetic algorithms to solve knapsack problem 01, enclosing the test data.
bpnn1
- 一个测试 后馈神经网络的程序, 解决XOR 问题-After a test procedure for feed-forward neural network to solve XOR problem
Astar_TSP
- 用A星算法解决旅行商(货郎担)问题,附设计报告和测试用例-A Star algorithm used to solve TSP (traveling salesman) problems, with the design of reports and test cases
yuandaima
- 基于遗传算法,针对考试系统的自动出题问题,应用矩阵理论的知识,为自动组卷系统建立了一个合适的数学模型,使我们能在数学模型的基础上,应用遗传算法全局寻优和智能搜索的特性,在试题的各种属性满足数学模型的控制指标的基础上,从题库中既好又快的抽出一组符合考方要求的试题,从而得到一份满意的试卷。-Based on genetic algorithms, automatic test system for the title problem, the application of matrix theory
GA
- 一个简单遗传算法,用一个测试问题测试,到到得结果比较好-This is a simple genetic algorithm and the algorithm is tested by a test problem, and the result is not bad
ACOforTSP
- tsp问题的群蚁算法实现,其中c为测试矩阵,代表各点的相对坐标,NC_max 最大迭代次数 ,m蚂蚁个数,Alpha 表征信息素重要程度的参数,Beta 表征启发式因子重要程度的参数,Rho 信息素蒸发系数,Q 信息素增加强度系数,R_best 各代最佳路线,L_best 各代最佳路线的长度,运行后得到最佳路线和收敛曲线-ant problem tsp algorithm group, of which c for the test matrix, the representative of
SCCAD
- VC编的遗传算法源代码,可以显示测试问题的曲线。-VC for the genetic algorithm source code, to show the curve of the test problem.
ACO_0_1_bag
- 蚁群算法解0-1背包问题 内附测试文件 解的质量一般叫好,但是背包数增加时,耗时较长-Ant Colony Algorithm for 0-1 Knapsack Problem solution document containing test the quality of the general good, but the increase in the number of backpack, the longer time-consuming
A_Acolyte_176621752004
- A Acolyte of AI with 8 Puzzle-This is an attempt to bring some AI programming in VB using A Star (A*) algorithm to solve 8 puzzle problem. This is the famous AI search algorithm test problem to rearrange misplaced cells in a proper sequence on an 3 b
WFG_v2006.03.28
- WFG多目标算法测试函数,多目标演化算法用测试函数-Test Problem Tool Kits
test
- 模拟退火算法求解0-1背包问题。模拟退火算法求解0-1背包问题-Simulated annealing algorithm for solving knapsack problem
ACO-for-three-well-known-TSP-problem
- 该程序是以蚁群系统为模型写的蚁群算法程序(强调:非蚂蚁周模型),以三个著名的TSP问题为测试对象。通过微调参数,都可以获得较好的解-The program is based on ant colony system algorithm for the model written procedures ( emphasis : Non- ants week model ) to three well-known TSP problem for the test object. By fine-tu
test
- 用C++实现了如何用遗传算法解决TSP旅行商问题-C++ realized how to use genetic algorithms to solve the traveling salesman problem TSP
CEC-test-2010
- cec2010用于测试智能算法,是带约束问题的测试函数.修复了一些情况下不能用的情况-cec2010 test for intelligent algorithms, is a test function with constraint problem. Fixed some cases the situation can not be used
