搜索资源列表
增广最小二乘估计
- 如果噪声e(k)为有色噪声时,采用最小二乘辨识系统参数为有偏估计,为改善噪声e(k)为有色噪声模型的系统参数估计的统计特性,提出一种增广矩阵的方法
weinat
- 基于DD算法的先验信噪比估计的维纳语音降噪完整程序,包括语音分帧,动态信噪比估计,噪声估计更新和帧的重构。很完整。-DD algorithm based on a priori signal to noise ratio is estimated that the integrity of the process noise reduction Wiener voice, including voice sub-frame, dynamic signal to noise ratio estim
speech_enhancement_matlab_by_lx
- 实验结果表明该算法对非冲击噪声效果良好。 lx_main为主程序,NS_lxwz为噪声估计模块,lxG_wz为增益估计模块,noise_sound为测试用含噪语音。 算法原理参见本人的文章《一种引入延迟的语音增强算法》。-Experimental results show that the algorithm for non-impulsive noise effect is good. lx_main the main program, NS_lxwz for the noise es
MATLAB
- 对噪声信号中的正弦信号,通过Pisarenko谐波分解方法、Music算法和Esprit算法进行频率估计,信号源是: 其中, , , ; 是高斯白噪声,方差为 。使用128个数据样本进行估计。 1、用三种算法进行频率估计,独立运行20次,记录各个方法的估计值,计算均值和方差; 2、增加噪声功率,观察和分析各种方法的性能。-Sinusoidal signal in the noise signal through the Pisarenko harmonic decomposition metho
levinsonf
- 信号为两个正弦信号加高斯白噪声,用levinson递推法进行功率谱估计。-Signal for two sinusoidal signal plus Gaussian white noise, with levinson recursive power spectrum estimation method.
kakamsimulation
- 对卡尔曼滤波原理进行了仿真! 可用于雷达脉冲受随机噪声干扰后的原始数据最优估计。-The principle of the Kalman filter simulation! Can be used for radar pulse by the random noise of the original data after the optimal estimation.
m12_3
- 为了改善噪声e(k)为有色噪声模型的系统参数估计的统计特性,提出了一种增广矩阵的方法,称为增广最小二乘算法,MATLAB实现范例-In order to improve the noise e (k) for the colored noise model of the system parameters estimated statistical characteristics, an Augmented Matrix method, called Augmented Least Square
fenzhen
- 自己编的谱减语音增强谱减算法程序,带噪语音按帧处理的,利用寂静帧的语音段来估计噪声。-Own spectrum minus minus algorithm for spectral speech enhancement procedure of Noisy Speech by the frame of the treatment, the use of silence the voice frame to estimate the noise above.
slope_adapt_filter
- 实现对InSAR复相位信号进行基于局部频率估计的“斜坡自适应(slope-adapt)滤波” 此滤波方法特别适用于InSAR相位图滤波,能在最大限度保持有用信息的条件下滤除各种噪声。-A matlab function of Slope-adapt-filter for InSAR phase filtering. It is based on local frequency estimation.
BPSKAWGN
- 加性高斯噪声信道下BPSK信道估计,matlab程序,做得还比较好!希望能帮助你们!-AWGN channel under BPSK channel estimation, matlab procedure done better! To help you!
LMS
- 简单的最小二乘逼近算法,用于系统辨识,方便修改噪声参数和系统参数,为系统辨识和仿真作业的源代码。-Simple least-squares approximation algorithm for system identification to facilitate the modification of system parameters and noise parameters for the system identification and simulation of the sourc
periodgram
- 经典谱估计-周期图法 实现正弦波加正态白噪声信号的谱估计-Classical spectrum estimation- the realization of periodogram normal sine wave plus white noise signal spectrum estimation
burgf
- 信号为两个正弦信号加高斯白噪声,用burg递推法对其进行功率谱估计,效果不错。-Signal for two sinusoidal signal plus Gaussian white noise, the recursive method burg its power spectrum estimation, good results.
xiebohuifu
- 首先定义累计量函数,然后通过调用四阶累计量来实现有色噪声中谐波恢复,但有个缺点是信号源估计在实际应用时应有所改进!-First, the definition of cumulant function, and then by calling the fourth-order cumulant to achieve the harmonic retrieval in colored noise, but one drawback is that the signal source is esti
L_D
- 用Matlab程序实现P阶Levinson-Durbin算法。以一个2阶自回归模型(参数为b0=1, a1=0, a2=0.81)和一个2阶滑动平均模型(参数为b0=1, b1=1, b2=1)为例,选取观测数据长度为1000,分别用一个AR(2)模型和一个AR(10)阶模型来估计其功率谱。设激励信号模型的高斯白噪声的均值为0,方差为1。用Levinson-Durbin算法迭代计算AR模型参数,并用估计出的AR模型参数画出观测信号的功率谱。并对Levinson-Durbin算法的性能进行分析。-
martinspeech
- 用于speech enhancement的经典噪声估计源代码完整,可直接使用。-Classical speech enhancement for noise estimation complete source code can be used directly.
GPS2
- 用MATLAB在产生的观测数据中捕获其中PRN 号码为“5”C/A 码。 (1) 观测数据应该有一定的多普勒频偏D f(-10kHz〈D f〈+10kHz); (2) 加入高斯白噪声,使其信噪比为-20dB; (3) 捕获成功后,应给出捕获标志,并给出估计的频偏和码偏值。-Generated by MATLAB in which observed data capture PRN number is " 5" C/A code. (1) there should b
EVD
- 用子空间分解法求出时延估计,这种方法具有较强的抗噪声性能-Calculated using subspace decomposition delay estimation, this method has strong anti-noise performance
基于frft估计线性调频信号的参数
- 使用frft变换来估计线性调频信号的初始频率和调制斜率,估计精度高,不含噪声滤波。
IMCRA111
- IMCRA(Improved?Minima Controlled Recursive Averaging,IMCRA),它们虽然保证了噪声谱估计的准确性,但在追踪带噪语音平滑功率谱最小值时采用了固定时间窗,因此,在噪声突变的情况下,估计的噪声谱存在很长的延时。(IMCRA, Although they ensure the accuracy of noise spectrum estimation, they use a fixed time window to track the minimu
