搜索资源列表
meanshift
- 实现了基于mean-shift的图像检索,实现了比较两图像的相似度,选择最相近的图片-To achieve mean-shift based image retrieval, to realize the similarity of two images, the selection of the most similar image
check
- 点击名字图片自动选择人物,并有框中人物头像-Click the name of image is automatically selected characters, and a box head people
facerecognition
- 该matlab程序可以根据所选择的测试库中图片对人脸进行识别,从而在系统中找到与之匹配的图片。-The matlab program can test the library, the selected image on the human face recognition, which is found in the system to match the pictures.
Apple-feature-extraction
- 苹果特征提取,按照灰度化,直方图均衡化,中值滤波,边缘检测,特征提取的顺序来 特征提取中,取得“比例系数”时,选择一张横径图片,序号与之前选择图像的相同-Apple feature extraction, according to grayscale, histogram equalization, median filtering, edge detection, feature extraction feature extraction in order to obtain "
Image_segmentation_regional_growth
- 图像的区域增长源码,可手动选择像素点,图片数据请修改M文件里的内容,自行读取。-Images regional growth source, can be manually choose pixels, the picture data please amend M file content, to read.
eight_pictures
- 批量读取图片,选择一定区域求像素平均值,并进行拟合-Batch read the image, select a certain area seeking pixel averages and fitting
车牌识别系统MATLAB源代码完整
- clc; clear all; close all; [filename, pathname, filterindex] = uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';... '*.*','All Files' }, '选择待处理图像', ... 'images\01.jpg'); file = fullfile(pathname, filename);%文件路径和文件名创建合成完整文件名 id = Get_
facetrace
- gui界面,弹出文件夹选择界面,选择jpg格式文件,显示相应图片,框出其中所有人脸(The GUI interface displays pictures, frame all the faces)
MATLB
- 选择两张图片,一张水印图,一张嵌入图,将水印图进行Arnold置乱算法将其置乱,嵌入到嵌入图中,形成数字零水印,选用白噪声、高斯低通滤波、压缩、剪切、旋转攻击测试。以此观察图像鲁棒性(Select two pictures, a watermark and an embedded graph. We will scramble the watermark image with Arnold scrambling algorithm and embed it into the embedded m
车牌识别子函数
- 分割蓝色车牌,选择一张蓝色车牌图片,可以把7个字符分割并分别存储(license plate segmentation)
picuture_fun
- 从电脑中选择一个图片,本程序可对图片完成类型转换,几何运算,代数运算(平均法降噪和减数运算),傅里叶变换,图像增强(包括灰度值变换,直方图均衡化,邻域平均法和中值滤波波法),图像复原,图像分割等功能。(Choose a picture from the computer, this program can complete type conversion, geometric operation, algebraic operation (average noise reduction and
data_batch_2
- cifar-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像。数据集分为五个训练批次和一个测试批次,每个批次有10000个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。训练批次以随机顺序包含剩余图像,但一些训练批次可能包含来自一个类别的图像比另一个更多。总体来说,五个训练集之和包含来自每个类的正好5000张图像。 具体:batch2.mat文件,该训练集可以用于图片识别,非负矩阵分解等。(The ci
