资源列表
ID3
- 决策树算法的实现,id3算法,内含实验数据以及报告-an example of id3 algorithm
fp_growth
- 数据挖掘的FPgrowth算法,快速的获得频繁项集-FPgrowth data mining algorithms, fast access to frequent item sets
SPPP3.0
- 包含了信号处理的各种算法程序,如传统的傅里叶变换等时域和时频域分析。-Contains a variety of signal processing algorithms
LSSVM
- 最小二乘支持向量机,程序粘到command window里,设定 2 两个参数,可以更改,以达到最优化-igam=0.001 isig2=0.001 [gam,sig2]=tunelssvm({X,Y, f ,igam,isig2, RBF_kernel },... [0.001 0.001 10000 10000], gridsearch ,{}, leaveoneout_lssvm ) type= function approximation kernel= RBF_
FCBF
- This a one of the data mining algorithm completly made by me. This is based on feature subset selection. One of the popular algorithm of feature selection named Fast Correlation based feature selection algorithm(FCBF).It s complete code is here with
CuCao2ClassTrain
- 基于粗糙集的分类规则提取和分类规则约简。首先进行粗糙分类器训练,然后将复杂的分类规则降维成简单的分类规则,但分类精度不变。-Rough classification learning rules are trained and extracted based on rough sets and complex classification rules are dimensionally reduced into simple classification rules, but the class
MATLAB-generate-fuzzy-rules
- MATLAB通过数据挖的方法,得到模糊控制规则,用来进行模糊控制。-MATLAB through data mining method to obtain a fuzzy control rule for fuzzy control.
apriori
- 用r语言编写的apriori算法 源代码 可直接使用-With r language apriori algorithm source code can be used directly
gplvm
- 这是一个用于高斯过程隐变量模型的工具箱,其中包含了MATLAB/C/PYTHON三种语言版本-As of July 2005 a C++ implementation of the GPLVM exists which has most of the flexibility of this software but runs much faster. However as of this time it cannot handle very large data sets as the spar
55e9ae658d29
- 基于bagging算法的C++程序,包括matlab程序的结合。代码简单易懂,适合模式识别的初学者。-Based bagging algorithm C++ procedures, including combining matlab program. Code is easy to understand for beginners pattern recognition.
dianyunyasuoxianshi
- 通过对曲率压缩法的改进 实现电云的压缩 并显示压缩后的点云数据-By compressing method improvement curvature point cloud compression and display the point cloud data compressed
CF
- 这是用matlab写的协同滤波算法主程序,程序简单,易于理解。可以应用于推荐系统-It is used to write collaborative filtering algorithm matlab main program, the program is simple and easy to understand. Recommended system can be applied。。。。。。
