资源列表
一个 PCA 算法的matlab程序
- 主成分分析(PCA)算法是用于简化数据的一种技术,对于某些复杂数据就可应用主成分分析法对其进行简化。-principal component analysis (PCA) algorithm is used to simplify the technology of data, For some complex data can be applied Principal Component Analysis streamline its.
gdqthresh
- 采用matlab软件编写一种基于过渡区的图像分割方法,-using Matlab software development based on the transitional zone of image segmentation methods,
依赖坐标的分割方法
- 用matlab编写的一种依赖坐标的图像分割方法,即动态阈值分割法-using Matlab prepared by the coordinates of a reliance on image segmentation method, that is, dynamic thresholding segmentation method
水印matlab程序
- 有多个文件 可以根据文件名和注释进行选择 提取算法可以根据嵌入算法 自行写出 提供了较好的抗压缩和抗剪切的效果-a number of documents under the file name and choose Notes extraction algorithm can write their own algorithms embedded mention for a better compression and anti-shear effect
fmap2
- matlab编写的训练som神经网络源程序 -Matlab prepared by the neural network training som source
三弯矩插值
- 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-three polynomial interpolation Hangzhou least squares polynomial interpolation Romberg integration subparagraph Line sex angle interpolation three interpola
三转角插值
- 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-three polynomial interpolation Hangzhou least squares polynomial interpolation Romberg integration subparagraph Line sex angle interpolation three interpola
多项式最小二乘法
- 多项式最小二乘法 三弯矩插值法 lagrange多项式插值 多项式最小二乘法 龙贝格积分法 分段线性插值 三转角插值 这些是数值分析中常用的集中经典方法,运用matlab展示出来!-least squares polynomial interpolation three Moment Hangzhou polynomial interpolation polynomial least-squares method Long Bagby integration piec
stateflow examples
- matlab stateflow讲义的例程,很有参考价值-the Matlab routines, great reference value
luoluo
- 用于Monte Carlo仿真的二进制FSK系统-for the Monte Carlo simulation of the binary system FSK
ImagePartition
- 对文档图像进行分割,有效去除文档的边界黑色信息,-right Document Image segmentation, effective removal of a black border documentation information,
2005mcma
- 2005MCMA题程序,本程序是自己编的,如有不足请见谅-2005MCMA that procedure, the procedure was by myself, and if there is insufficient please forgiven
