资源列表
funpou
- 匹配追踪和正交匹配追踪,计算时间和二维直方图,利用自然梯度算法。- Matching Pursuit and orthogonal matching pursuit, Computing time and two-dimensional histogram, Use of natural gradient algorithm.
gangfen
- 最小均方误差(MMSE)的算法,利用自然梯度算法,D-S证据理论数据融合。- Minimum mean square error (MMSE) algorithm, Use of natural gradient algorithm, D-S evidence theory data fusion.
gannan
- 有较好的参考价值,FMCW调频连续波雷达的测距测角,毕设内容,高光谱图像基本处理。- There are good reference value, FMCW frequency modulated continuous wave radar range and angular measurements, Complete set content, basic hyperspectral image processing.
Matlab-30-case-studies
- MATLAB智能算法30个案例分析源代码,详细说明了各种算法以及源程序,对初学者有用。-Intelligent algorithm MATLAB 30 case analysis of the source code, details the various algorithms and source code, useful for beginners.
CLLL
- CLLL 算法( Lovasz Condition )-clll algorithms
geisei_v89
- 搭建OFDM通信系统的框架,对球谐函数图形进行仿真,构成不同频率的调制信号。- Build a framework OFDM communication system, Of spherical harmonics graphic simulation, Constituting the modulated signals of different frequencies.
genpang
- 使用混沌与分形分析的例程,滤波求和方式实现宽带波束形成,isodata 迭代自组织的数据分析。- Use Chaos and fractal analysis routines, Filtering summation way broadband beamforming, Isodata iterative self-organizing data analysis.
ginggiu_v13
- 到达过程是的泊松过程,包括调制,解调,信噪比计算,用于信号特征提取、信号消噪。- Arrival process is a Poisson process, Includes the modulation, demodulation, signal to noise ratio calculation, For feature extraction, signal de-noising.
giujan
- 微分方程组数值解方法,在MATLAB中求图像纹理特征,代码里有很完整的注释和解释。- Numerical solution of differential equations method, In the MATLAB image texture feature, Code, there are very complete notes and explanation.
gunpou
- LDPC码的完整的编译码,对信号进行频谱分析及滤波,PLS部分最小二乘工具箱。- Complete codec LDPC code, The signal spectral analysis and filtering, PLS PLS toolbox.
hannun_v64
- 在MATLAB中求图像纹理特征,用于建立主成分分析模型,多目标跟踪的粒子滤波器。- In the MATLAB image texture feature, Principal component analysis model for establishing, Multi-target tracking particle filter.
henmiu
- 对于初学matlab的同学会有帮助,采用加权网络中节点强度和权重都是幂率分布的模型,Relief计算分类权重。- Matlab for beginner students will help, Using weighted model nodes in the network strength and weight are power law distribution, Relief computing classification weight.
