资源列表
beibao
- 程序中的beibao1函数采用了贪婪算法的另一种写法,beibao函数是以前的代码,用来比较两种算法-Process beibao1 function greedy algorithm used another wording, beibao function is the previous code, used to compare two algorithms
ECDLPsolver
- 椭圆曲线对数问题解决算法:采用Pohlig-Hellman 算法化简问题-Elliptic curve logarithm problem-solving algorithm: The Pohlig-Hellman algorithm simplification problem
Gauss2
- 列主元高斯消去:解方程组用,在实际使用高斯消去法时,常结合使用“选主元”的技术以避免零主元或小主元的出现,以便保证高斯消去发的正常进行或改善求解过程的数值稳定性。-PCA out Gaussian elimination: Solution of equations used in the actual use of Gaussian elimination method, often combined with the use of PCA election technology in o
genetic_algorithm
- 基于求函数f(x,y,z)=xyz*sin(xyz)最大值问题的演示程序-Based on the demand function f (x, y, z) = xyz* sin (xyz) max demo issues
fuhuatixing1
- 复化梯形求积公式:定积分近似计算的一个有效方法——复化牛顿-科玆方法,其中最常用的当推复化梯形公式。-Rehabilitation of trapezoidal quadrature formula: Approximate calculation of definite integral is an effective way- rehabilitation of the Newton- Kotz methods, the most commonly used when pushing reh
Jacobi
- 雅克比迭代:线性代数方程组的迭代法与直接方法不同,他不能通过有限次的算术运算球的方程组的精确解,而是通过迭代逐步逼近他。该法是求解具有大型系数系数矩阵的线性方程组的重要方法之一。-Jacobian iteration: linear algebraic equations of the iteration method and direct way, he can not be limited times arithmetic equations ball exact solution, but
lagrange
- 拉格朗日插值逼近:在离散数据基础上补插除连续函数是计算数学中最基本最常用的手段是函数逼近的重要方法。-Lagrange interpolation approximation: In the discrete data based on the fill plug in addition to continuous function is the mathematical calculation of the most basic means of the most commonly used
Newton
- 牛顿插值公式:构造插值函数空间的基函数得到的多项式逼近的方法——牛顿插值法。用于多项式插值逼近。-Newton interpolation formula: Construction interpolation function space available basis function polynomial approximation method- Newton interpolation. Approximation for the polynomial interpolation.
8
- 最小二乘的一个帕皮提、帮助你学会使用最小二乘的方法!-A least-squares Papeete to help you learn how to use the method of least squares!
gauss-sedal
- J-S迭代解题的程序,源码。答案较精确。-JS iterative problem-solving procedures, source code. More accurate answer.
Converse
- 用最大主元法求矩阵的逆,可以求不规则矩阵的逆,结果稳定-Element method with the greatest master of the inverse matrix can be irregular for the inverse matrix, resulting in stable
artical
- 关于最小二乘平差模型的总结与区别,讨论了关于参数选取的有关问题-On the least squares adjustment model and the difference between a summary of discussions on issues related to the parameters selected
