资源列表
adaptive-signal-arithmetic
- Some algorithms of variable step size LMS adaptive filtering are studied.The VS—LMS algorithm is improved. Another new non-linear function between肛and e(/ t)is established.The theoretic analysis and computer simulation results show that this algo
ann_examples
- 神经网络的一些例子,和仿真程序,非常全面,欢迎下载-neural network some examples, and the simulation program, very comprehensive, welcome to download
xiaobohanshu
- 对于小波去噪,采用的是小波函数,并在去噪同时进行语音的压缩。-for wavelet denoising, using the wavelet denoising and simultaneously voice compression.
lvboquzaoxin
- 用于消噪处理用于研究Mallet算法及滤波器设计分解的高频系数采用db9较好,即它的消失矩较大-for Signal Processing Algorithms for the study Mallet decomposition and filter design using high-frequency coefficients db9 better, that is, its larger vanishing moments
zuixiaoercheng
- 系统辨识中的最小二乘算法程序,希望对大家有用-system identification of least-squares algorithm procedures in the hope that it may be useful to
GRBF
- 还可以把,大家可以去看看。我觉得还可以还可以把,大家可以去看看。我觉得还可以-can also be used, we can look at. I think that can also can also be used, we can look at. I felt that I could
Wind_Turbine_Pm_Tm
- 风力机模型 通过matlab simulink建立的,现在这种资太少了-wind turbine model through the establishment of the Matlab Simulink, which is now too little funding
t3_1
- 求解三次样条函数思路为:由 连续 预设 , 为一次多项式:故 积分2次 积分常数(2个) 由插值条件 确定 积分常数 得 (含预设的 ) 利用 连续: 确定 的 个方程 + 2边界条件 确定 加入 的表达式,形成 。 -solving cubic spline function ideas : consecutive default, as a polynomial : so integral two integral constant (2) determined by int
t2_5
- 本题采用的计算方法为:主要用Jacobi迭代和Gauss-Seidel迭代解线性方程组。 Jacobi迭代算法思路:由方程组 ,使等式左端仅保留向量 ,其他一概放到右端,将 代入上式右端,便可(按顺序逐行)进行计算得到 。 Gauss-Seidel迭代和Jacobi迭代不同的是先计算第一式得到 ,用此数再参与第二式的右端的计算,依次类推。 -that the use of the method of calculating : main Jacobi iteration and th
t2_4
- 本题采用的计算方法为:主要求解三对角阵方程组得解。采用的计算方法为“追赶法”。 算法思路为:求解方程Ly=d(追)——〉求解Ux=y(赶) -that the use of the method of calculating : three pairs for the main diagonal matrix equations in the solution. Using the method of calculating "catch up law." Algor
t2_3
- 本题采用的计算方法为:矩阵的 分解和Cholesky分解。根据Gauss消去法的的矩阵意义,可以将矩阵A分解为一个单位下三角矩阵与一个上三角矩阵的乘积即:即矩阵的LU分解A=LU,进而可以分解为: 的形式。当A为对称矩阵时,A可分解为: 的形式。-that the use of the method of calculating : matrix decomposition and Cholesky decomposition. According to the Gauss eliminatio
Gausst2_1b
- 计算方法为:Gauss消去法和列主元Gauss消去法。列主元Gauss消去法算法思路如下: 查找列主元——〉消去——〉回代 -calculation : Gauss elimination method and main-element Gauss elimination method. Main-element Gauss elimination algorithm is as follows : Search out the main element -
