资源列表
Fig.3
- Stud. Appl. Math. 118, 153-197 (2007)关于孤子的位图,figure3-Stud. Appl. Math. 118, 153-197 (2007) on the soliton bitmap, figure3
Fig.5
- Stud. Appl. Math. 118, 153-197 (2007)关于solitons的一篇文章,位图figure5的编程-Stud. Appl. Math. 118, 153-197 (2007) on the solitons in an article, bitmap figure5 Programming
Fig.6
- Stud. Appl. Math. 118, 153-197 (2007)关于solitons的一篇文章,figure6的编程,主要是运用牛顿迭代法进行数值模拟的。-Stud. Appl. Math. 118, 153-197 (2007) on the solitons in an article, figure6 programming, primarily using Newton' s iterative method of numerical simulation.
Text1
- 这是用Fortran编写的解线性方程组,一般的线性方程组都可以解,很方便-It is written in Fortran for solving linear equations, the general solution of linear equations can be very convenient
ellisometry
- 这个程序是用来计算盘基片的厚度和折射分布的程序.-this file is used to calculate the thickness and the refractive index of thse sample, and these two parameter distribution ca nbe obtained.
count
- 可以实现加减乘运算的大数运算器,操作数可长达10000位,使用作为文件输入输出-Addition and subtraction operations can be achieved by large numbers calculator, operands of up to 10000, using as a file input and output
simple
- 二维simple算法程序 带注释,为流体的计算提供了算法的设计,并带有承租的明确注释-Two-dimensional simple algorithm program annotated for the fluid computing algorithm design and with a single clear note
Broyden_newton
- 最优化方法实验设计,研究Broyden族拟Newton算法中fai(k)取值的优化问题,即对于不同的目标函数,考虑取何值时算法是最优的,重点考察的区间[-2 2]范围内的变化情况,算法的优劣程度由CPU运行时间决定。-Optimization method, design of experiments to study the proposed Newton algorithm Broyden family fai (k) values of the optimization problem,
CODAPE~1
- RLE encoding using C++ language
fft
- 快速傅里叶变换,c程序代码-Fast Fourier transform, c program code. . . . . . . . . . . . . . . . . . .
VisualC
- 常用数值算法源代码第1章线性代数方程组的解法,第2章插值,第3章数值积分,第4章特殊函数,第5章函数逼近,第6章随机数,第7章排序第8章特征值问题第9章数据拟合第10章方程求根和非线性方程组的解法第11章函数的极值和最优化第12章傅里叶变换谱方法第13章数据的统计描述第14章解常微分方程组第15章两点边值问题的解法第16章偏微分方程的解法-Numerical algorithm used
tin
- Delaunay三角网作为一种主要的数字地形模型表示法,经过二十多年来的研究,它的生成算法已趋于成熟。本算法是一个基于Delaunay的很强壮的构三角网(TIN)的算法。-Delaunay triangulation as a major representation of digital terrain model, after 20 years of research, it generates algorithms have been mature. This algorithm is b
