资源列表
排队论mm1
- 排队论中的一个仿真程序,主要是用于仿真M/M/1、M/D/1模型。输入排队模型相关参量,返回计算结果。-It s a simulation in queueing, mainly using in simulating M/M/1 and M/D/1 module. Input the parameter about the module and return the result.
24782
- Material Requirement Planning is a dependent demand system that calculates materials requirements and production plans to satisfy known and forecast sales orders. It helps to make volume and timing calculations based on an idea of what will be necess
CPP_Make_the_to_calculate
- 利用以下公式,计算 PI 至小数点后s位 oo --- n L * PI \ (-1) 4 * L L -------- = / [ ------- ( ---------- - -------------- ) ] 4 --- 2n+1 5^(2n+1) 239^(2n+1) n=0 L : 为一大整数 10^s PI : 圆周率-Using the following formula to calculate PI to s
matlab曲面拟合程序
- matlab曲面拟合程序,可以得到函数具体解析式,matlab surface fitting procedure, can be a specific analytical function
dileguanwaibianmianji
- 适用于换热器行业,专门用来计算低肋管外表面积,按界面输入管子结构数据,按计算按据即可。-Suitable for heat exchanger industry, designed to calculate the low-fin tube external surface area, according to data input interface tube structure, according to data calculated.
CAIC_M1
- 梁的有限元开裂分析代码,包括不同的裂纹形式,裂纹数目等-Finite element analysis of beams cracking the code, including different forms of crack, crack number, etc.
线性代数方程组的求解
- C常用数值算法--线性代数方程的求解-C commonly used numerical algorithm -- linear algebraic equations can be solved
Fibonacc
- 求解Fibonacc数列中大于t的最小的一个数,结果由函数返回
programdesignonminbiclosecurve
- 最小二乘逼近曲线的计算机程序设计介绍和详细说明-Least squares curve approximation to introduce computer programming and a detailed descr iption
常微分方程初值问题的数值解法
- 常微分方程初值问题的数值解法:Euler方法、 Runge-Kutta方法、线性多步法、预测-校*、 等。-Ordinary Differential Problems Numerical Solution : Euler's method, Runge - Kutta method, linear multi-step forecast-correction method, etc.
vb-PID
- 用VB6编写的模拟PID算法的源程序,仅供学习-Written with VB6 analog PID algorithm source code, only to learn
083
- 歌德巴赫猜想:验证2000以内的正偶数都能够分解成两个素数之和,即验证歌德巴赫猜想再2000范围内的正确性-Goldbach conjecture: Verify 2000 is even less able to break down into two prime numbers and that the Goldbach conjecture and then verify that the scope of the correctness of 2000
