资源列表
Chap06
- 计算机常用数值算法与程序(C++版 ) Chap06 矩阵特征值与特征向量计算-Computer numerical algorithm and procedures used (C++ Version) Chap06 matrix eigenvalue and eigenvector calculation
shuzhi_c
- 1.求方程组的解算法: Guass迭代法、Doolittle分解法 2.求矩阵特征值算法: 幂法、反幂法、LU分解法
trust
- 数值最优化:解界约束优化问题的非单调组合信赖域方法,以及在信赖域内部进行二阶线搜索。-Numerical Optimization: non-monotonic combination of trust region methods solution of bound constrained optimization problems, and trust within the Ministry of second-order line search.
StandardDeviation
- 标准差,通常计算了信号的分析,整体的一部分。但是,有时我们想知道这个数量在不断变化的数据流。 MEANSTDF计算预期的平均值,及其标准差。统计问题常用比较量。-Standard deviation, is usually calculated signal analysis, part of the whole. However, sometimes we want to know the number of ever-changing data streams. MEANSTDF calcu
SiftStringSimilarity
- SIFT3 字符串距离比较,类Levenshtein算法实现。速度较 Levenshtein距离算法快10-45倍。实现略有不同,结果也与 Levenshtein有些差异,但高速是此算法的特点。详情请看: http://siderite.blogspot.com/2007/04/super-fast-and-accurate-string-distance.html-Super Fast and Accurate string distance algorithm: Sift3. Fro
ranlib
- 随机数据的C++生成,随机取样,希望对大家有帮助-C++ generate random data, random sampling, we want to help
lagelangri
- 用拉格朗日插值法计算X0的近似值,操作简单-X0 Lagrange interpolation method to calculate the approximate simple
cove
- 最大覆盖问题:给定n个整数a , a , ,an 1 2 组成的序列。如果对于i £ k £ j ,有k | j | a £ a ,则称j a 覆 盖序列区间i i j a , a , , a +1 ,相应的覆盖区间长度为j-i+1。
直接实现坐标转换源码(VB)
- 不用组件,直接实现坐标转换源码(VB).从经纬度转换为目的大地坐标的源码!,Components do not directly coordinate transformation implementation source code (VB). For the purpose of conversion from latitude and longitude coordinates of the source the earth!
shuzhi_C++
- 包含二分法、复化辛卜生公式、改进欧拉法、拉格朗日插值多项式、龙贝格算法、牛顿迭代法、牛顿值多项式、最小二乘法、雅克比迭代法等算法。-contains dichotomy, rehabilitation of Oracle Health formula, Improved Euler, Lagrange polynomial interpolation. Long Bergh algorithm, Newton's method, Newton value polynomials, lea
knn
- 在visual basic环境下,实现k-nearest neighbor算法。-in visual basic environment, achieving k-nearest neighbor algorithm.
fengleitongji
- 对数据进行按列分类统计,统计平均值、背景值、方差等-The data by columns classification statistics, statistical average, the background value, variance, etc.
