资源列表
tenlei
- function [U,center,result,w,obj_fcn]= fenlei(data) [data_n,in_n] = size(data) m= 2 % Exponent for U max_iter = 100 % Max. iteration min_impro =1e-5 % Min. improvement c=3 [center, U, obj_fcn] = fcm(data, c) for i=1:max_iter if
BP
- bp神经网络的基本算法,功能强大,可以借鉴使用-bp neural network of the basic algorithms, powerful, can learn from the use of
aaaaa
- 大范围环境下移动机器人同步定位和地图创建研究-Large-scale environment for mobile robot simultaneous localization and map building research
DT1BPDTnet
- 对动态一阶对象采用BP神经网络进行建模的源程序,经过调试,直接就可以由MATLAB运行!-Dynamic first-order object to the use of BP neural network to model the source, after debugging, directly from MATLAB can be run!
DT1RBFGJDTDSYJYnet
- 对动态一阶对象采用RBF神经网络进行建模的源程序,经过调试,直接就可以由MATLAB运行!-Dynamic first-order object to the use of RBF neural network to model the source, after debugging, directly from MATLAB can be run!
DT1RBFnet
- 对动态一阶对象采用rbf神经网络进行建模的源程序,经过调试,直接就可以由MATLAB运行!-Dynamic first-order object using rbf neural network modeling of source, after debugging, directly from MATLAB can be run!
DT2RBFDTnet
- 对动态二阶对象采用rbf神经网络进行建模的源程序,经过调试,直接就可以由MATLAB运行!-Dynamic second-order objects using rbf neural network modeling of source, after debugging, directly from MATLAB can be run!
JTRBFGJnet
- 对静态对象采用rbf神经网络进行建模的源程序,经过调试,直接就可以由MATLAB运行!-On the static object using rbf neural network modeling of source, after debugging, directly from MATLAB can be run!
JTRBFnet
- 对静态对象采用rbf神经网络进行建模的源程序,经过调试,直接就可以由MATLAB运行!-On the static object using rbf neural network modeling of source, after debugging, directly from MATLAB can be run!
NDT1BPnet
- 对非线性动态一阶对象采用bp神经网络进行建模的源程序,经过调试,直接就可以由MATLAB运行!-Of nonlinear dynamic first-order object using bp neural network modeling of the source, after debugging, directly from MATLAB can be run!
NDT1RBFnet
- 对非线性动态一阶对象采用rbf神经网络进行建模的源程序,经过调试,直接就可以由MATLAB运行!-Of nonlinear dynamic first-order object using rbf neural network modeling of source, after debugging, directly from MATLAB can be run!
Apriori
- Apriori算法的实现,包括候选生成,裁减以及生成封闭的平凡项集。-Apriori algorithm, including candidate generation, reduction and generation of closed itemsets extraordinary.
