资源列表
MIMLNN
- 基于多实例多标记的图像学习,在多实例多标记学习框架的采用matlab语言设计的实验-In image annotation and retrieval, one image often has multiple labels owing to its complicated semantics, whereas different image regions often provide different hints for the labels.
mddm
- 针对多实例多标记图像问题,代码介绍一种处理维度灾难的方法-In this paper, we propose an effective model and develop an efficient algorithm to solve the multi-instance dimensionality reduction problem.
TS_fuzzy
- TS模糊,包括聚类数选取,输入选择,前件辨识,后件辨识等-TS Fuzzy Model
1
- 返回步进方式使用拉格朗日形式动态控制四旋翼-Back stepping approach for controlling a quadrotor using Lagrangian form dynamics
Parameter-estimation
- 研究复杂网络的模型中参数未知的情况,用MALLAB解决参数估计问题-The parameters of the model study of complex networks is unknown, parameter estimation problem solve with MALLAB
Neutrality-of-the-system
- 研究中立型系统的稳定性问题,用MATLAB求解线性矩阵不等式。此程序为某论文中引用 的一个例子-Stability Studies neutral systems using MATLAB for solving linear matrix inequalities. An example of this procedure is a reference paper
examples
- 模式识别与人工智能书籍的MATLAB文件,包括12个实用的编程例子-Pattern Recognition and Artificial Intelligence MATLAB file books, including 12 practical programming examples。
Chaotic-parameter-modulation
- 基于混沌参数调制技术,研究混沌反同步在密保通信的应用-请键入文字或网站地址,或者上传文档。 取消 Jīyú hùndùn cānshù tiáozhì jìshù, yánjiū hùndùn fǎn tóngbù zài mì bǎo tōngxìn de yìngyòng 您是不是要找: 婚Chaotic parameter modulation technology, research and application of anti-synchronization of cha
cmac_xz
- 二维CMAC神经网络逼近函数源代码,算法清晰,注释很全,是学习CMAC神经网络的不二之选-CMAC neural network learning choice for the two-dimensional approximation of the function CMAC neural network source code, algorithms clear, very full notes, is
m_main
- 基于蚁群算法的机器人路径规划(避障)可运行有结果-Can be run based on ant colony algorithm for robot path planning (obstacle avoidance) outcome
sanfenlei
- 基于BP算法的神经网络仿真程序,用典型例子三分类,验证神经网络在非线性分类中应用-Based on BP neural network algorithm simulation program, using typical examples of three categories, verify nonlinear neural network classification
BPANNS
- 实现了神经网络的一种算法,用户输入数值后自动得出结论-An algorithm of neural networks,after the user enters the value,the program will automatically conclude
