资源列表
control1
- 路径追踪控制器,实现目标对象贴近期望轨迹并追踪期望轨迹的控制。-Path tracking controller, to achieve the target object close to the desired trajectory and desired trajectory tracking control.
FeatureExtraction
- 用超限学习机实现情感识别中的部分,用于情感等特征的提取。-Learning machine with overrun achieve emotional identification section, for extracting emotional characteristics.
CPSO
- 混沌粒子群算法,求代价函数问题,可以避免粒子群算法陷入局部最优,求取全局最优。代码含代价函数,可作为例子理解。-Chaos particle swarm optimization, seeking cost function problems, avoid getting into local optimum particle swarm algorithm, obtaining the global optimum. Code containing cost function can be u
l_f
- 一个路径追踪控制器,用于实现2个主从机器人的相互追踪。-A path tracking controller for each other to achieve two main tracks the robot.
trackingsine
- 一个路径追踪控制器,用于实现机器人追踪期望路径的目的。-A path tracking controller for the robot to track a desired path to achieve the purpose.
tworobotrackingsine
- 一个双机器人的路径追踪控制器,用于实现2个机器人追踪期望路径的目的。-One pair of robot path tracking controller for the robot to achieve two desired path for tracking purposes.
OS-ELM(Python)
- ELM是一种简单易用、有效的单隐层前馈神经网络,该代码是用python实现的极限学习机,亲测有用-extreme learning machine realized by python,it works well
pid
- PID控制器的设计,内涵PID控制器设计的源程序。-Controller of PID
BP
- 误差反传网络(BP)特点:1)对原始数据的分布型式无要求;2)已知模型的类型应比较全面;3)适用于多目标模式识别;4)外推能力有限;5)定性数据和定量数据混合处理;6)当加入新模型时需要重新训练网络;7)不能用于数据插值。 -1) the distribution pattern of the original data requirements 2) known model types should be more comprehensive 3) suitable for multi
Hopfield
- 循环反馈网络(Hopfield)特点:1)定性数据的模式识别;2)依靠吸引子来作模式识别;3)其功能可由BP网络来实现,但速度较快。 -Loop feedback network (Hopfield) features: 1) the qualitative data of the pattern recognition 2) rely on attractor for pattern recognition 3) its function can be made of BP netwo
Kohonen
- 自组织网络(Kohonen)特点:1)适用于超大样本的无监督分类;2)其结果常常需要与统计分析一起使用来解释分类结果;3)能够识别新类型,但功能较差。 -1) is suitable for large sample of unsupervised classification 2) the results often need to use with statistical analysis to explain the classification results 3) to ide
RBF
- 径向基函数网络(RBF)特点:1)可用于任意维空间的插值;2)训练速度和插值速度较慢;3)一旦训练成功,只要存储权系数矩阵即可,适用于海量数据的插值;4)当数据不全时,可以用于数据补全。 -Radial basis function (RBF) network features: 1) can be used in any dimensional space interpolation 2) interpolation and the training speed slower 3) o
