资源列表
sga
- 基本遗传算法源程序, 输入数据文件input,输出文件output-Genetic algorithm source code, the input data file input, the output file output
linjin
- 用k近邻法和剪辑近邻法分类样本点,模式识别实验内容之一-K neighbors with neighbors and editing sample points classification, pattern recognition one experiment
single-neuron-
- 单神经元自适应网络,完成神经网络PID控制,输出采用龙格库塔法-The single neuron adaptive network
ga
- 标准遗传算法,优化函数为f=-(x-1)^2+4,其中,0<=x<=3,建议初学者使用- Standard genetic algorithms, optimization function f =- (x-1) ^ 2+4, where, 0 < = x < = 3, recommended for beginners to use
GA
- 遗传算法的基本实现代码,对于初学者会有一定的帮助的-The basic realization of genetic algorithm code for beginners will help the
pso
- 求解多维无约束优化问题,收敛速度快,程序代码简洁。-Solving multi-dimensional unconstrained optimization problem, fast convergence, concise code.
yi-chuan-suan-fa
- 遗传算法m文件,m文件中注明的是中文-Stated in the genetic algorithm m file m file is Chinese. . . . .
Fish
- 模拟生物种群鱼群的觅食行为,让人工鱼直接移动到较优位置。解决多维非线性多目标优化问题-Simulate the foraging behavior of biological populations of fish, let the fish move directly to artificial optimum position. Solve multidimensional nonlinear multi-objective optimization problem
yichuan
- * 这里是遗传算法的核心框架遗传算法的步骤: * 遗传算法核心部分的算法描述 * 算法步骤: * 1、初始化 * 1.1、生成初始种群编码 * 1.2、计算每个个体的适配值。 * 1.3、记录当前最优适配值和最优个体 * 2、选择和遗传, * 2.0、若当前最优适配值多次小于已有的最优适配值(或相差不大)很多次,或者进化的次数超过设定的限制,转4。 * 2.1、按照与每个个体的适配值成正比的概率选择个体并复制,复制之后个体的数目和原始种群数目
ga
- 用遗传算法进行无功优化,IEEE33节点实例-Reactive power optimization using genetic algorithm, the the IEEE33 nodes instance
RBF
- 径向基神经网络(RBF网络)的三种学习算法实现:随机选取中心法、自组织选取中心和梯度训练算法-Three radial basis function neural network (RBF) learning algorithm: randomly selected center method, self-organizing selection center and gradient training algorithm
logpolar
- Log-polar resampling of an image, and back-sampling to retinal plane
