资源列表
GA
- 遗传算法优化小波神经网络的matlab实现,简单易懂。-failed to translate
Reactive-Power-Optimization-matlab
- 程序为改进的遗传算法对配电网无功优化补偿问题。电力系统配电网的无功优化规划是保证配电网安全、经济运行的一项有效手段,是降低网损、提高电压质量的重要措施。-Reactive power optimization is one of the most important control methods to ensure power system operation securely and economically,and an effective measure to improve the v
path-planning
- 移动机器人路径规划方法,自己在做毕业设计是总结的,比较系统化。-path planning method
multi-class-problem
- 将多类别问题分解成多个二类别问题是解决多类别分类问题的常用方式。传统one against all(OAA)分解方式的性能更多的依赖于个体分类器的精度,而不是它的差异性。本文介绍一种基于集成学习的适于多类问题的神经网络集成模型,其基本模块由一个OAA方式的二类别分类器和一个补充多类分类器组成。测试表明,该模型在多类问题上比其他经典集成算法有着更高的精度,并且有较少存储空间和计算时间的优势。-Decompose multi-class problem into multiple binary cl
Particle-Swarm-Optimization-method
- 本程序采用基本粒子群算法,共有8个测试函数,测试算法对复杂函数的收敛速度和收敛方差-This program uses a Particle Swarm Optimization, a total of eight test functions, test algorithm convergence speed and variance of complex functions
pso-matlab
- pso 粒子群算法 用局部最优和全局最优不断趋近于最优解的算法-Particle Swarm Optimization Algorithm
xor123456
- BP模型逼近异或问题,可观测隐层节点数及隐层数对模型的影响-BP model approximation differences or problems, the observation can be hidden nodes and hidden layers of the model
PSO-BP
- 用粒子群优化法对BP神经网络的权值和阈值进行优化,提高神经网络运行精度。-Using particle swarm optimization method for weights and threshold of BP neural network optimization, improve precision of the neural network operation.
ga
- 同时考虑了应用的实时性和网络的能源有效性,提出了一种基于GA的嵌套优化技术,并在多跳聚簇网络中进行能源高效的任务分配-Taking into account the energy efficiency of real-time application and network optimization technique based on GA nested, and energy efficient task allocation in multi-hop clustered network
BP_Classifier
- 用MATLAB实现的简单分类器,算法为BP神经网络,为监督学习,需要训练集(文件中附有训练集,供测试用),分类效果较好。-This program creates a Classifier to identify the gender by height and weight based on BP network.
TSP
- 蚁群算法求解TSP问题,附详细说明,适合初学者使用,此程序100 可用-ACO Ant Colony Optimization Artificial Intelligence
ACSForCVRP(parallelPcandidateLists)
- 蚁群系统算法求解车辆路径问题,其中的蚁群系统使用了基于三角划分的候选列表。-Ant System algorithm for vehicle routing problem, which the ant colony system uses a list of candidates based on triangulation.
