资源列表
神经网络预测
- 神经网络预测的一个经典算例,P矩阵的数据可以改,方便使用(A example of neural network)
nbwnf
- Rotating machinery 2-d holographic spectrum calculation, Combined with PCA scale invariant feature transform (SIFT) algorithm, Mainly based on the mtlab procedures.
kfold_cv-master
- divide your data set into training and validation sets for n-fold cross-validation.
ShuffleNet-master
- 一种专门为移动端设备而设计的高效卷积神经网络结构——ShuffleNet,这种新结构将点态组卷积(pointwise group convolution)和通道随机混合(channel shuffle)这两种经典方法进行结合与改进,大大提升了计算效率 。(ShuffleNet is an efficient convolutional neural network designed for mobile terminal devices. This new structure combines
BP
- BP网络拟合,将数据分为训练和测试组,训练完成,采用测试组来评价网络的性能。(simulation for BP neural network)
myPSO
- 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等[1] 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutati
code
- 线性神经网络,最经典的是线性自适应元件,其在收敛精度和速度上较感知器均有较大的提高。(Linear neural network, is the most classical adaptive linear element, the precision and the speed of convergence is sensor was greatly improved.)
sourceCode
- 用python 语言结合DNN简单实现语音增强(DNN speech enhancement)
chapter9
- 神经网络算法解决实际工程问题通过matlab实现(Neural network algorithm to solve practical engineering problems through matlab implementation)
Ch03
- 本程序用Python语言实现决策树算法,供大家学习,交流使用。(This program uses Python language to achieve decision tree algorithm, for everyone to learn, exchange use.)
GA-BP
- 算法基本要素: 1.染色体编码方法 2.适应度函数 3.遗传操作—-(选择、交叉、变异) 4.运行参数—(参数:群体大小M、遗传代数G、交叉概率Pc和变异概率Pm)(Basic elements of algorithm: 1. chromosome coding method 2. fitness function 3. - the genetic operation (selection, crossover and mutation) 4. operating pa
自己编的BP神经网络程序例子
- 一个简单的BP神经网路 帮助初级学习者入门(simple bp nural network)
