资源列表
QLearning
- 增强型学习算法合集,包含matlab源程序,C#源程序,是非常好的学习QL的资料。强烈推荐-Enhanced learning algorithm collection, including Matlab source, C# source, is a very good learning QL information. Strongly recommended
genetic-algorithm-with-Baldwin-
- 关于baldwin效应对遗传算法影响的论文-paper discuss how baldwin effect improves GA s performance
ann
- 介绍了一种基于神经网络白化匹配滤波器的QRS 波检测方法。我们用神经网络白化匹配滤波器来处 理ECG 信号的低频成分, 模拟其非线性及非稳态的特性。处理后的信号中含有ECG 中大部分高频成分, 让其通过 一线性匹配滤波器来检测QRS 波及其位置。对于大噪声的ECG 信号, 在匹配滤波器后加差分滤波, 取平方及滑动 平均等处理, 提高检测正确率。使用这种方法我们对M IT?B IH 心电信号数据库中噪声比较大的105号数据进行的 处理, 检测正确率为9912 。作为对比, 用数字
AI_Eight_number
- 本程序用来实现八数码难题。采用A星算法,设计程序,求出从初始状态到目标状态的最优路径,并给出问题的状态表示、编码规则、搜索算法分析、简单程序说明和求得的最优路径。编程方法新颖,思路清晰明了。-This procedure used to achieve the eight puzzle. A star algorithm used, the design process, from initial state to find the optimal path to goal state, and
DFS
- 用DEV写的DFS经典算法例题,危险系数,题目有些难度,代码简洁效率高-With DEV written DFS classical algorithm example, the risk factor entitled some difficulty, simple and high code efficiency
mo-shi-shi-bie
- 本书是《模式识别》杨光正第二版的习题答案,请需要的人选择下载!-This book is a " pattern recognition" Yang Guang is the second edition of the exercises answer, please select the need download!
FuzzyEngine
- FuzzyEngine for Fuzzy Logic Inferense System on JAVA
project2_code
- 这是matlab编写的Logistic Discrimination 和 KNN分类器代码。这两个算法的实现参考了《Introduction to Machine Learning》。 除此在代码中还包含了调用matlab自带的libsvm的例程。rumLogisticDiscrimination, runKnn, runSvm分别对这3个算法在数据集liver_train_data上的分类准确度进行测试。测试结果在code report.doc 中有简要描述。-This code implem
ordinalGAimplementfortrayloading
- 关于物流管理中的托盘装载遗传算法实现——基本版-ordinal GA implement for tray loading
Evolution
- 差分进化算法的基础讲义和文档,都是英文版,属于基础资料,可以作为入门资料。-Differential evolution algorithm based handouts and documents are in English, is based on information that can be used as entry.
LRTA
- 关于联机搜索智能体,实现的简单算法,LRTA算法。-With regard to on-line search agent to achieve a simple algorithm, LRTA algorithm.
Astar-Solution-eight-digital-problem
- 经典八数码问题A*算法,用DEV编译运行的,算法很健壮,注释不多但严格按照算法思路编写。-Classic eight digital A* algorithm, using DEV compiler to run, the algorithm is very robust, not many notes but in strict accordance with the algorithm to prepare.
