资源列表
支持向量机
- 基于支持向量机算法的乳腺癌预测,自带数据,直接可运行!(Support vector machine algorithm based breast cancer prediction, comes with data, can run directly!)
Deep_MNIST_for_Expert
- 利用深度学习进行数字分类,分类的正确率非常高。(Using deep learning method to classify digit numbers)
aramss
- 利用ARIMA算法对输入序列进行预测(源码是对价格进行预测,可类推)。(ARIMA algorithm is used to predict the input sequence.)
BPwangluo2
- 利用MATLAB工具箱进行神经网络编程 解决TSP的最短路径问题(Using MATLAB Toolbox for Neural Network Programming Solve the shortest path problem of TSP)
PSOofFLC
- PSO of Fuzzy Logic control
Binary Genetic Algorithm Feature Selection (2)
- Binary GA selection method
tensorflow_cov_mnist
- 基于tensorflow的mnist数据集卷积神经网络简单代码实现。(MNIST dataset based on tensorflow convolutional neural network simple code implementation)
tensorflow_simple_neuNetwork
- 基于tensorflow的简单神经网络代码实现(Implementation of simple neural network code based on tensorflow)
COPRA
- Finding overlapping communities in networks by label propagation论文中基于LPA的扩展算法COPRA,可以用于重叠社区的发现(COPRA, an extension algorithm based on LPA, can be used to discover overlapping communities)
kNN
- kNN分类算法机器学习实战中python测试代码用例(KNN classification algorithm, machine learning, actual combat, python test code, use case)
Desktop
- 隐马尔科夫模型的python测试代码及优化算法代码(Hidden Markov model of the python test code and optimization algorithm code)
CNTK
- 在深度的重要性的驱使下,出现了一个新的问题:训练一个更好的网络是否和堆叠更多的层一样简单呢?解决这一问题的障碍便是困扰人们很久的梯度消失/梯度爆炸,这从一开始便阻碍了模型的收敛。归一初始化(normalized initialization)和中间归一化(intermediate normalization)在很大程度上解决了这一问题,它使得数十层的网络在反向传播的随机梯度下降(SGD)上能够收敛。 当深层网络能够收敛时,一个退化问题又出现了:随着网络深度的增加,准确率达到饱和(不足为奇)然后迅
