- huffmanHY 关于哈夫曼压缩编码的源代码 还没使用于压缩 嘻嘻^
- EQ 一款由单片机控制的带有均衡图形显示功放机
- Multi A Complete cycle CPU Written in Verilog Lang.
- if_pppox Linux PPP over X
- djvulibre-3.5.20-5.tar djvi rider source code
- AVR2022_swpm231-2.0 Reference Manual: Software Programming Model for Atmel's IEEE 802.15.4 radio transceiver AT86RF231 (HTML version).
资源列表
SVM
- SVM(support vector machine )是支持向量机,是一种可以训练的机器学习方法
SVM_Classify
- 利用支持向量机相关知识,实现意大利葡萄酒种类识别-Using the knowledge of the support vector machine (SVM), The case relize Italian wine species identification
HopField
- 根据HopField神经网络相关知识,该案例实现数字识别-According to the HopField neural network knowledge, the case realize digital identification
MPIDDLX
- 根据PID神经元网络控制原理,实现PID神经元网络控制多变量耦合系统-According to the principle of PID neural network control, the case realize that PID neural network control multivariable coupling system
BP_Hidden
- 该案例运用BP神经网络实现非线性系统建模-The case realize nonlinear system modeling using BP neural network
genetic-algorithm
- 遗传算法的Matlab实现,附带具体TSP,最短路问题程序-Matlab genetic algorithm to achieve, with specific TSP, the shortest path problem program
backtrack_eight_digit
- 运用回溯法解决八数码问题。实现以最短路径从初始状态到目标状态。-Use backtracking to solve eight digital. In order to achieve the shortest path the initial state to target state.
Nine_block_box
- 实现自动寻找九宫格初始状态到目标状态的最短路径并结合opencv图像切割以图像的形式展现出来。-Looking squared automatic initial state to target state and the shortest path opencv combined with images cut to form an image unfolded.
mvgc_v1.0
- 该MVGC工具箱的设计与应用于神经科学实证数据,是一个多变量格兰杰因果分析的新方法。-The MVGC toolbox has been designed with application to empirical neuroscience data in mind,which is a new method for multivariate Granger causality analysis.
bsmart0p5b105
- bsmart工具包,用于构建大脑功能网络(格兰杰因果),可视化的操作界面以及详细的说明,方便易懂。-bsmart toolbox to build a network of brain function (Granger), visual interface and detailed instructions for easy to understand.
proximal
- 基于近邻算子的凸优化函数。实现一范数等不可导问题的优化。-Optimization function based on neighbor operator convex. Optimize a norm and other non-lead issues.
ADMM
- The alternating direction method of multipliers优化算法。简称ADMM,是机器学习中比较广泛使用的约束问题最优化方法。-The alternating direction method of multipliers optimization algorithm. Acronym ADMM, the machine learning problem is more widespread use of constraint optimization me
