资源列表
svm-demo
- 一个svm的演示程序,能演示两类数据分类,有gui界面,不使用第三方工具箱,使用gaussian核函数,界面能设置c和gamma的参数值,最后可以得到分类情况的可视化效果。针对svm算法的研究者和用于教学演示的教师,是个不错的源码。-An svm demo program that can demonstrate two types of data classification, gui interface, do not use third-party toolbox, using gauss
Stacked_Denoising_Autoencoders
- 每层以去噪自动编码算法训练,以栈式结构组成深度的学习结构-Noising algorithm to automatically encode each training to the depth of the stack structure consisting learning structure
Denoising_Autoencoders
- 深度学习中去噪自动编码算法的C语言的简单实现-Depth study denoising automatic coding algorithm C language to achieve a simple
Deep_Belief_Nets
- 深度学习中的深信度网(DBN)的C语言的简单实现-Convinced degree of deep learning network (DBN) to achieve a simple C language
SAE
- 深度学习中稀疏编码的C语言程序,是根据斯坦福深度学习的教程MATLAB的代码改写的-Depth learning sparse coding in C language program is based on the Stanford deep learning tutorial MATLAB code rewrite
RBM
- 用C语言实现的深度学习的RBM(受限玻尔兹曼机),是组成DBN网络的基本结构-Using C language to achieve deep learning of RBM
ICA-face-recognition
- 本程序是基于ICA(独立成分分析)方法进行人脸识别,人脸库已经给出,有需要的童靴自行下载-This procedure is based on ICA (independent component analysis) method for face recognition, face database has been given, there is a need to download children' s boots
NQueen(pa-shan-fa)
- 人工智能-爬山法解决N皇后问题,vs2010编写,代码有注释,可轻松理解。-AI- climbing method to solve the N-Queens problem, vs2010 written code annotated, easy to understand.
A-star-8num
- 人工智能中A*算法解决八数码问题,c++源代码,vs2010编写实现,效果很好,代码有注释,方便理解-AI A* algorithm to solve eight digital problem, c++ source code, vs2010 prepared to achieve good results, code annotated, easy to understand
A-Star-solve-8NUM
- 人工智能-八数码问题A-STAR算法的实现及性能分析。包括C++源代码,有代码注释,理解轻松。-Artificial Intelligence- eight digital issues A-STAR algorithm and performance analysis. Including C++ source code, code notes, easy to understand.
Face-orientation-recognition
- 本课题研究的步骤如下:先提取人脸的特征向量;产生训练样本和测试样本;再用LVQ创建神经网络模型,该模型用训练样本进行训练调整权值;用测试样本对建立的人脸朝向识别模型进行验证,要求有较高的识别率。 本课题要求使用LVQ神经网络的算法进行Matlab仿真,对人脸朝向进行有效的判断和识别。 -This study is the following steps: first extract facial feature vector generate training and testing
classification-of-Speech-signal-
- 语音特征信号识别是语音识别研究领域中的一个重要方面,一般采用模式匹配的原理解 决。语音识别的运算过程为:首先,待识别语音转化为电信号后输入识别系统,经过预处理后用数学方法提取语音特征信号,提取出的语音特征信号可以看成该段语音的模式。然后将该段语音模型同已知参考模式相比较,获得最佳匹配的参考模式为该段语音的识别结果-Recognition is the speech characteristic signal in the field of speech recognition is an i
