文件名称:titanium
介绍说明--下载内容来自于网络,使用问题请自行百度
VC Support Vector Classification
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
-VC Support Vector Classification
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
-VC Support Vector Classification
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
相关搜索: SVC
(系统自动生成,下载前可以参看下载内容)
下载文件列表
titanium.mat
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
