文件名称:shujuguanlian
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:420.67kb
-
已下载:1次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
数据关联是多目标跟踪的一项关键技术。JPDA是大家公认的多目标跟踪中性能较好的数据关联算法,它
认为量测和目标是一一对应的关联关系,但在许多实际情况中,量测和目标是多一多对应的关系。针对上述情况,该文提
出了广义概率数据关联算法(Generalized Probability Data Association,GPDA)。文中从理论上对这两种算法的性能进行了
详细分析,并利用Monte Carlo技术对其性能进行了仿真比较。-Data association is one of the key technologies in multi—target tracking.And JPDA is considered as the best da·
ta association method.JPDA considers the association of measurements with targets is simply one-to-one problem.But in many
practical cases,the association of measurements with targets will be multiple—to—multiple problem.For this case,a
Generalized
Probability Data Association(GPDA)algorithm is proposed in this paper.Furthermore,this paper analyzes the performance of
these two algorithms theoretically.And we give the comparative analysis of those performances by using Monte Carlo method.
认为量测和目标是一一对应的关联关系,但在许多实际情况中,量测和目标是多一多对应的关系。针对上述情况,该文提
出了广义概率数据关联算法(Generalized Probability Data Association,GPDA)。文中从理论上对这两种算法的性能进行了
详细分析,并利用Monte Carlo技术对其性能进行了仿真比较。-Data association is one of the key technologies in multi—target tracking.And JPDA is considered as the best da·
ta association method.JPDA considers the association of measurements with targets is simply one-to-one problem.But in many
practical cases,the association of measurements with targets will be multiple—to—multiple problem.For this case,a
Generalized
Probability Data Association(GPDA)algorithm is proposed in this paper.Furthermore,this paper analyzes the performance of
these two algorithms theoretically.And we give the comparative analysis of those performances by using Monte Carlo method.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
两种多目标数据关联算法的性能研究.pdf
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
