- segment source code and ref paper of C++ implementation of the image ation algorithm described in the paper: \"Efficient Graph
- rwdrcoef 程序算任意点FFT和小波变换
- evpic ASP.NET的图片上传组件
- backproj BACKPROJ uses the filtered or unfiltered ection algorithm to perform the inverse Radon transform. The filter is designed directly in the frequency domain and then multiplied by the FFT of the projections. The projections are zero
- GraphicLib-master Android使用Sobel算法提取图片轮廓的例子
- jqgrid jqGrid is an Ajax
文件名称:satish
介绍说明--下载内容来自于网络,使用问题请自行百度
Avetis Ioannisyan
avetis@60ateight.com
Last Updated: 11/30/05
LMS Channel Adaptation
reset randomizers
randn( state ,sum(100*clock))
rand( state ,sum(100*clock))
numPoints = 5000
numTaps = 10 channel order
Mu = 0.001:0.001:0.01 iteration step size
input is guassian
x = randn(numPoints,1) + j*randn(numPoints,1)
choose channel to be random uniform
h = rand(numTaps, 1) + i*rand(numTaps, 1)
h = [1 0 0 0 1] testing only
h = h/max(h) normalize channel
convolve channel with the input
d = filter(h, 1, x)
initialize variables
w = []
y = []
in = []
e = [] error, f- Avetis Ioannisyan
avetis@60ateight.com
Last Updated: 11/30/05
LMS Channel Adaptation
reset randomizers
randn( state ,sum(100*clock))
rand( state ,sum(100*clock))
numPoints = 5000
numTaps = 10 channel order
Mu = 0.001:0.001:0.01 iteration step size
input is guassian
x = randn(numPoints,1) + j*randn(numPoints,1)
choose channel to be random uniform
h = rand(numTaps, 1) + i*rand(numTaps, 1)
h = [1 0 0 0 1] testing only
h = h/max(h) normalize channel
convolve channel with the input
d = filter(h, 1, x)
initialize variables
w = []
y = []
in = []
e = [] error, f
avetis@60ateight.com
Last Updated: 11/30/05
LMS Channel Adaptation
reset randomizers
randn( state ,sum(100*clock))
rand( state ,sum(100*clock))
numPoints = 5000
numTaps = 10 channel order
Mu = 0.001:0.001:0.01 iteration step size
input is guassian
x = randn(numPoints,1) + j*randn(numPoints,1)
choose channel to be random uniform
h = rand(numTaps, 1) + i*rand(numTaps, 1)
h = [1 0 0 0 1] testing only
h = h/max(h) normalize channel
convolve channel with the input
d = filter(h, 1, x)
initialize variables
w = []
y = []
in = []
e = [] error, f- Avetis Ioannisyan
avetis@60ateight.com
Last Updated: 11/30/05
LMS Channel Adaptation
reset randomizers
randn( state ,sum(100*clock))
rand( state ,sum(100*clock))
numPoints = 5000
numTaps = 10 channel order
Mu = 0.001:0.001:0.01 iteration step size
input is guassian
x = randn(numPoints,1) + j*randn(numPoints,1)
choose channel to be random uniform
h = rand(numTaps, 1) + i*rand(numTaps, 1)
h = [1 0 0 0 1] testing only
h = h/max(h) normalize channel
convolve channel with the input
d = filter(h, 1, x)
initialize variables
w = []
y = []
in = []
e = [] error, f
相关搜索: random channel
(系统自动生成,下载前可以参看下载内容)
下载文件列表
satish.m
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
