文件名称:information-fusion-algorithm
介绍说明--下载内容来自于网络,使用问题请自行百度
本文利用模糊理论中的高斯隶属
度函数来获得模糊观测下具有概率特性的似然函数,并且由此似然函数得到每个传感器提供信息的可信度;再将各传感器的可
信度转化成基本概率赋值函数即mass 函数;最后利用证据理论对多传感器信息进行融合。对目标识别的仿真试验表明该方法获
得的结果比直接结果具有更高的精度和可靠性。-The method uses fuzzy theory in the Gaussian
fuzzy membership function to obtain a probable characteristic under observation likelihood function,and the resulting likelihood
function gets the credibility of the information provided by the sensors.Then the reliability of each sensor is changed
to a mass function.Finally,multi-sensor information is combined by using evidence theory.Simulation of target recognition
shows that the results obtained have higher accuracy and reliability.
度函数来获得模糊观测下具有概率特性的似然函数,并且由此似然函数得到每个传感器提供信息的可信度;再将各传感器的可
信度转化成基本概率赋值函数即mass 函数;最后利用证据理论对多传感器信息进行融合。对目标识别的仿真试验表明该方法获
得的结果比直接结果具有更高的精度和可靠性。-The method uses fuzzy theory in the Gaussian
fuzzy membership function to obtain a probable characteristic under observation likelihood function,and the resulting likelihood
function gets the credibility of the information provided by the sensors.Then the reliability of each sensor is changed
to a mass function.Finally,multi-sensor information is combined by using evidence theory.Simulation of target recognition
shows that the results obtained have higher accuracy and reliability.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
利用模糊推理的证据理论信息融合算法.pdf
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。