- MerryMeeting(v.01) 这是我在NIIT读书的第三学期的项目源码 虽然不是很好 但学习是不错的 SQL2000
- jiyuzuixiaoerchengfagaijindesuijituoyuanjiance 为了提高数字图像中椭圆检测的效率和准确性
- AnnBp1 backpropagation matlab neural networks
- KeyFilter windows下的键盘过滤驱动源代码
- Particle_Swarm_Optimization_and_Differential This chapter provides two recent algorithms for evolutionary optimization – well known as particle swarm optimization (PSO) and differential evolution (DE).
- Genetic-and-Simulated-Annealing 针对战区装备保障点动态选址问题的广义最大覆盖选址模型
文件名称:adaptive-genetic-algorithm
介绍说明--下载内容来自于网络,使用问题请自行百度
自适应GA SVM 参数选择算法研究Param eter selection algorithm for support vector machines based
on adaptive genetic algorithm
支持向量机是一种非常有前景的学习机器, 它的回归算法已经成功地用于解决非线性函数的逼近问题. 但
是, SVM 参数的选择大多数是凭经验选取, 这种方法依赖于使用者的水平, 这样不仅不能获得最佳的函数逼近效果,
而且采用人工的方法选择 SVM 参数比较浪费时间, 这在很大程度上限制了它的应用. 为了能够自动地获得最佳的
SVM 参数, 提出了基于自适应遗传算法的 SVM 参数选取方法. 该方法根据适应度值自动调整交叉概率和变异概率,
减少了遗传算法的收敛时间并且提高了遗传算法的精度, 从而确保了 SVM 参数选择的准确性. 将该方法应用于船用
锅炉汽包水位系统建模, 仿真结果表明由该方法所得的 SVM 具有较简单的结构和较好的泛化能力, 仿真精度高, 具
有一定的理论推广意义.- The support vector m achine ( SVM ) is a prom ising artificia l inte lligence technique, in w hich the regres
sion a lgorithm has a lready been used to so lve the nonlinear function approach successfully. Un fortunate ly, m ost us
ers se lect param eters for an SVM by ru le o f thumb, so they frequently fail to generate the optim al approach ing e ffect
for the function. Th is has restricted effective use o f SVM to a great degree. In order to get optim a l param eters auto
m atically, a new approach based on an adaptive genetic a lgorithm ( AGA ) is presented, w hich autom atica lly ad
justs the param eters for SVM. This m ethod se lects crossover probability and mutation probab ility accord ing to the
fitness va lues of the object function, therefo re reduces the convergence tim e and im proves the prec ision o fGA, in
suring the accuracy of param eter se lection. Th is m ethod w as applied to m odeling of w ater level system o f a sh ip
b
on adaptive genetic algorithm
支持向量机是一种非常有前景的学习机器, 它的回归算法已经成功地用于解决非线性函数的逼近问题. 但
是, SVM 参数的选择大多数是凭经验选取, 这种方法依赖于使用者的水平, 这样不仅不能获得最佳的函数逼近效果,
而且采用人工的方法选择 SVM 参数比较浪费时间, 这在很大程度上限制了它的应用. 为了能够自动地获得最佳的
SVM 参数, 提出了基于自适应遗传算法的 SVM 参数选取方法. 该方法根据适应度值自动调整交叉概率和变异概率,
减少了遗传算法的收敛时间并且提高了遗传算法的精度, 从而确保了 SVM 参数选择的准确性. 将该方法应用于船用
锅炉汽包水位系统建模, 仿真结果表明由该方法所得的 SVM 具有较简单的结构和较好的泛化能力, 仿真精度高, 具
有一定的理论推广意义.- The support vector m achine ( SVM ) is a prom ising artificia l inte lligence technique, in w hich the regres
sion a lgorithm has a lready been used to so lve the nonlinear function approach successfully. Un fortunate ly, m ost us
ers se lect param eters for an SVM by ru le o f thumb, so they frequently fail to generate the optim al approach ing e ffect
for the function. Th is has restricted effective use o f SVM to a great degree. In order to get optim a l param eters auto
m atically, a new approach based on an adaptive genetic a lgorithm ( AGA ) is presented, w hich autom atica lly ad
justs the param eters for SVM. This m ethod se lects crossover probability and mutation probab ility accord ing to the
fitness va lues of the object function, therefo re reduces the convergence tim e and im proves the prec ision o fGA, in
suring the accuracy of param eter se lection. Th is m ethod w as applied to m odeling of w ater level system o f a sh ip
b
(系统自动生成,下载前可以参看下载内容)
下载文件列表
自适应GA_SVM参数选择算法研究.pdf
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
