- STM32F10USB STM32单片机的USB操作的手册
- mapLSB 基于BMP图像格式调色板排序的的信息隐藏算法
- 100-classic-C-Programming-Language 100个经典的C语言程序
- ReadXML 读取XML中的信息 简单的 网站用的 上传上来 以免被删除了
- EX7 this arithmetic coding in matlab
- wext-1.1.0.test.tar The WEXT Testimonial Slider is most popular & best free testimonial slider plugin.If you are thinking to build a testimonial slider in your website
文件名称:kmeans
介绍说明--下载内容来自于网络,使用问题请自行百度
function [L,C] = kmeans(X,k)
KMEANS Cluster multivariate data using the k-means++ algorithm.
[L,C] = kmeans(X,k) produces a 1-by-size(X,2) vector L with one class
label per column in X and a size(X,1)-by-k matrix C containing the
centers corresponding to each class.
Version: 07/08/11
Authors: Laurent Sorber (Laurent.Sorber@cs.kuleuven.be)
References:
[1] J. B. MacQueen, "Some Methods for Classification and Analysis of
MultiVariate Observations", in Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, L. M. L. Cam
and J. Neyman, eds., vol. 1, UC Press, 1967, pp. 281-297.
[2] D. Arthur and S. Vassilvitskii, "k-means++: The Advantages of
Careful Seeding", Technical Report 2006-13, Stanford InfoLab, 2006.
-function [L,C] = kmeans(X,k)
KMEANS Cluster multivariate data using the k-means++ algorithm.
[L,C] = kmeans(X,k) produces a 1-by-size(X,2) vector L with one class
label per column in X and a size(X,1)-by-k matrix C containing the
centers corresponding to each class.
Version: 07/08/11
Authors: Laurent Sorber (Laurent.Sorber@cs.kuleuven.be)
References:
[1] J. B. MacQueen, "Some Methods for Classification and Analysis of
MultiVariate Observations", in Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, L. M. L. Cam
and J. Neyman, eds., vol. 1, UC Press, 1967, pp. 281-297.
[2] D. Arthur and S. Vassilvitskii, "k-means++: The Advantages of
Careful Seeding", Technical Report 2006-13, Stanford InfoLab, 2006.
KMEANS Cluster multivariate data using the k-means++ algorithm.
[L,C] = kmeans(X,k) produces a 1-by-size(X,2) vector L with one class
label per column in X and a size(X,1)-by-k matrix C containing the
centers corresponding to each class.
Version: 07/08/11
Authors: Laurent Sorber (Laurent.Sorber@cs.kuleuven.be)
References:
[1] J. B. MacQueen, "Some Methods for Classification and Analysis of
MultiVariate Observations", in Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, L. M. L. Cam
and J. Neyman, eds., vol. 1, UC Press, 1967, pp. 281-297.
[2] D. Arthur and S. Vassilvitskii, "k-means++: The Advantages of
Careful Seeding", Technical Report 2006-13, Stanford InfoLab, 2006.
-function [L,C] = kmeans(X,k)
KMEANS Cluster multivariate data using the k-means++ algorithm.
[L,C] = kmeans(X,k) produces a 1-by-size(X,2) vector L with one class
label per column in X and a size(X,1)-by-k matrix C containing the
centers corresponding to each class.
Version: 07/08/11
Authors: Laurent Sorber (Laurent.Sorber@cs.kuleuven.be)
References:
[1] J. B. MacQueen, "Some Methods for Classification and Analysis of
MultiVariate Observations", in Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, L. M. L. Cam
and J. Neyman, eds., vol. 1, UC Press, 1967, pp. 281-297.
[2] D. Arthur and S. Vassilvitskii, "k-means++: The Advantages of
Careful Seeding", Technical Report 2006-13, Stanford InfoLab, 2006.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
kmeans.m
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
