- jQuery-Desktop jquery实现的类似window桌面的源码
- MergePDFFiles This a small simple application to demonstrate how to merge multiple pdf documents into 1 pdf document. This application uses the opensource assembly iTextSharp.dll [this can be found here:http://sourceforge.net/projects/itextsharp/]
- GraphExample 所有关于图的算法
- net35 asp.net 教程 visual studio 2008 可以直接在visual studio 2008 看的网页教程 内有课后作业
- facerecognition 利用OPENCV分类器进行人脸检测程序
- python入门 学习
文件名称:find--k-best-1.00
介绍说明--下载内容来自于网络,使用问题请自行百度
Implementation of the Murty algorithm to obtain the best K assignments. Includes the implementation of the Jonker-Volgenant algorithm.
Usual applications are multiple target tracking algorithms, Joint Probabilistic Data Association (JPDA), Multiple Hypothesis Tracking (MHT), Global Nearest Neighbours (GNN), etc.
Based on the original code by Jonker-Volgenant, and the Murty Matlab implementation by Eric Trautmann
Can be used both from Java or Matlab.
Time for a 100x100 assignment problem, with k=20:
• Matlab implementation: 54.5 sec
• Java implementation: 1 sec
-Implementation of the Murty algorithm to obtain the best K assignments. Includes the implementation of the Jonker-Volgenant algorithm.
Usual applications are multiple target tracking algorithms, Joint Probabilistic Data Association (JPDA), Multiple Hypothesis Tracking (MHT), Global Nearest Neighbours (GNN), etc.
Based on the original code by Jonker-Volgenant, and the Murty Matlab implementation by Eric Trautmann
Can be used both from Java or Matlab.
Time for a 100x100 assignment problem, with k=20:
• Matlab implementation: 54.5 sec
• Java implementation: 1 sec
Usual applications are multiple target tracking algorithms, Joint Probabilistic Data Association (JPDA), Multiple Hypothesis Tracking (MHT), Global Nearest Neighbours (GNN), etc.
Based on the original code by Jonker-Volgenant, and the Murty Matlab implementation by Eric Trautmann
Can be used both from Java or Matlab.
Time for a 100x100 assignment problem, with k=20:
• Matlab implementation: 54.5 sec
• Java implementation: 1 sec
-Implementation of the Murty algorithm to obtain the best K assignments. Includes the implementation of the Jonker-Volgenant algorithm.
Usual applications are multiple target tracking algorithms, Joint Probabilistic Data Association (JPDA), Multiple Hypothesis Tracking (MHT), Global Nearest Neighbours (GNN), etc.
Based on the original code by Jonker-Volgenant, and the Murty Matlab implementation by Eric Trautmann
Can be used both from Java or Matlab.
Time for a 100x100 assignment problem, with k=20:
• Matlab implementation: 54.5 sec
• Java implementation: 1 sec
(系统自动生成,下载前可以参看下载内容)
下载文件列表
java-k-best-1.00/src/com/google/code/javakbest/Murty.java
java-k-best-1.00/src/com/google/code/javakbest/JVC.java
java-k-best-1.00/src/com/google/code/javakbest/PartitionNode.java
java-k-best-1.00/src/com/google/code/javakbest/Test.java
java-k-best-1.00/src/com/google/code/javakbest/Node.java
java-k-best-1.00/README.TXT
java-k-best-1.00/java-k-best.jar
java-k-best-1.00/findkbest.m
java-k-best-1.00/LICENSE
java-k-best-1.00/src/com/google/code/javakbest/
java-k-best-1.00/src/com/google/code/
java-k-best-1.00/src/com/google/
java-k-best-1.00/src/com/
java-k-best-1.00/src/
java-k-best-1.00/
java-k-best-1.00/src/com/google/code/javakbest/JVC.java
java-k-best-1.00/src/com/google/code/javakbest/PartitionNode.java
java-k-best-1.00/src/com/google/code/javakbest/Test.java
java-k-best-1.00/src/com/google/code/javakbest/Node.java
java-k-best-1.00/README.TXT
java-k-best-1.00/java-k-best.jar
java-k-best-1.00/findkbest.m
java-k-best-1.00/LICENSE
java-k-best-1.00/src/com/google/code/javakbest/
java-k-best-1.00/src/com/google/code/
java-k-best-1.00/src/com/google/
java-k-best-1.00/src/com/
java-k-best-1.00/src/
java-k-best-1.00/
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
