- LS(AR) 用LS法估计的AR参数并用Cadzow谱估计子估计出信号的功率谱密度
- BCB6(ppt) C++Builder6完全攻略!!詳細介紹C++Builder設計與使用~全篇34章!!(從元件的使用.RS232連接.MySQL.Thread....由淺入深)
- GeneticAlgorithmsandFuzzyMultiobjectiveOptimizatio 遗传算法与模糊多目标优化经典电子书
- sAGDSFHDGFHGJHKJK 基于伪距和伪距率的 GPS/INS组合导航系统仿真本科课程设计航空航天类
- foreman_qcif cognitive based WSN cognitive based WSN cognitive based WSN cognitive based WSN
- test 利用VS2010和Opencv打开摄像头显示画面(Use VS2010 and Opencv to open the camera display screen)
文件名称:ADL-code
介绍说明--下载内容来自于网络,使用问题请自行百度
通过对集成误差公式的理论分析,提出了一种能主动引导个体网络进行差异性学习的集成网络学习算法。该方法通过对集成误差的分解,使个体网络的训练准则函数中包含个体网络误差相关度的因素,并通过协同训练,引导个体网络进行差异性学习。该方法在基于油气分析的变压器故障诊断的实验结果表明,该方法的故障诊断准确率优于传统的三比值法与BP神经网络,其性能也比经典的集成方法Bagging和Boosting方法更稳定可靠。-A learning algorithm is proposed in this paper by analyzing the error function of neural network ensembles, in which individual neural networks are actively guided to learn diversity. By decomposing the ensemble error function, error correlation terms are included in the learning criterion function of individual networks. And all the individual networks in the ensemble are leaded to learn diversity through cooperative training. The method is applied in fault diagnosis of power transformer based on Dissolved Gas Analysis. Experiment results show that, the algorithm has higher accuracy than IEC method and BP network. And the performance is more stable than conventional ensemble method, i.e., Bagging and Boosting.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
ADL方法code/
ADL方法code/classdata.m
ADL方法code/classtraindata.m
ADL方法code/data.m
ADL方法code/dt_nne_simple.m
ADL方法code/dt_nne_vote.m
ADL方法code/dt_nne_winner.m
ADL方法code/fault_all_data.txt
ADL方法code/fault_bagging_NNE.m
ADL方法code/fault_bagging_bp.m
ADL方法code/fault_boosting_NNE.m
ADL方法code/fault_bpnet.m
ADL方法code/fault_data.m
ADL方法code/fault_data3.m
ADL方法code/fault_data3.txt
ADL方法code/iec.m
ADL方法code/irisdataset1.m
ADL方法code/nne_corr.m
ADL方法code/nne_simple.m
ADL方法code/nne_vote.m
ADL方法code/nne_winner.m
ADL方法code/trainset.m
ADL方法code/trainset1.m
ADL方法code/trainset2.m
ADL方法code/trainset3.m
ADL方法code/trainset4.m
ADL方法code/trainset5.m
ADL方法code/classdata.m
ADL方法code/classtraindata.m
ADL方法code/data.m
ADL方法code/dt_nne_simple.m
ADL方法code/dt_nne_vote.m
ADL方法code/dt_nne_winner.m
ADL方法code/fault_all_data.txt
ADL方法code/fault_bagging_NNE.m
ADL方法code/fault_bagging_bp.m
ADL方法code/fault_boosting_NNE.m
ADL方法code/fault_bpnet.m
ADL方法code/fault_data.m
ADL方法code/fault_data3.m
ADL方法code/fault_data3.txt
ADL方法code/iec.m
ADL方法code/irisdataset1.m
ADL方法code/nne_corr.m
ADL方法code/nne_simple.m
ADL方法code/nne_vote.m
ADL方法code/nne_winner.m
ADL方法code/trainset.m
ADL方法code/trainset1.m
ADL方法code/trainset2.m
ADL方法code/trainset3.m
ADL方法code/trainset4.m
ADL方法code/trainset5.m
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
