文件名称:RLS
介绍说明--下载内容来自于网络,使用问题请自行百度
仿真对象如下:
其中, v( k )为服从N (0,1) 分布的白噪声。输入信号u ( k) 采用M 序列,幅度为 1。M 序列由 9 级移位寄存器产生,x(i)=x(i-4)⊕x(i-9)。
选择如下辨识模型:
加权阵取Λ = I。
衰减因子β = 0.98,数据长度 L = 402。
辨识结果与理论值比较,基本相同。辨识结果可信
-he simulation object is as follows: among them, v (k) to obey N (0, 1) distribution of white noise. The input signal u (k) using M sequence, amplitude is 1. M sequence by 9 level shift register generation, x (I) = x (I- 4) ⊕ x (I- 9). Choose the identification model: weighted array take Λ = I. Attenuation factor β = 0.98, the data length L = 402. Identify the theoretical calculation and comparison, basically the same. Identification results are reliable
其中, v( k )为服从N (0,1) 分布的白噪声。输入信号u ( k) 采用M 序列,幅度为 1。M 序列由 9 级移位寄存器产生,x(i)=x(i-4)⊕x(i-9)。
选择如下辨识模型:
加权阵取Λ = I。
衰减因子β = 0.98,数据长度 L = 402。
辨识结果与理论值比较,基本相同。辨识结果可信
-he simulation object is as follows: among them, v (k) to obey N (0, 1) distribution of white noise. The input signal u (k) using M sequence, amplitude is 1. M sequence by 9 level shift register generation, x (I) = x (I- 4) ⊕ x (I- 9). Choose the identification model: weighted array take Λ = I. Attenuation factor β = 0.98, the data length L = 402. Identify the theoretical calculation and comparison, basically the same. Identification results are reliable
(系统自动生成,下载前可以参看下载内容)
下载文件列表
RLS.m
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
