文件名称:kPCA_v2.0
介绍说明--下载内容来自于网络,使用问题请自行百度
Principal component analysis (PCA) is a popular tool for linear dimensionality reduction and feature extraction. Kernel PCA is the nonlinear form of PCA, which is promising in exposing the more complicated correlation between original high-dimensional features. In this paper, we first talk about the basic ideas of PCA and kernel PCA, and then focus on the reconstruction of pre-images for kernel PCA. We also give an introduction on how PCA is used in active shape models (ASMs), and discuss how kernel PCA can be applied to improve traditional ASMs. Then we show some experiment results to compare the performance of kernel PCA and traditional PCA for pattern classification. We also implement the kernel PCA-based ASMs, and use it to construct human face models.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
kPCA_v2.0/
kPCA_v2.0/1207.3538.pdf
kPCA_v2.0/code/
kPCA_v2.0/code/PCA.m
kPCA_v2.0/code/data.mat
kPCA_v2.0/code/demo.m
kPCA_v2.0/code/kPCA.m
kPCA_v2.0/code/kPCA_PreImage.m
kPCA_v2.0/code/kernel.m
license.txt
kPCA_v2.0/1207.3538.pdf
kPCA_v2.0/code/
kPCA_v2.0/code/PCA.m
kPCA_v2.0/code/data.mat
kPCA_v2.0/code/demo.m
kPCA_v2.0/code/kPCA.m
kPCA_v2.0/code/kPCA_PreImage.m
kPCA_v2.0/code/kernel.m
license.txt
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
