- TDS32 VB开发的塔吊群防碰撞系统
- dominantSetClustering 图论中寻找主集的相关matlab代码
- sketch_jul07a Arduino Earthquake Detector
- VAVO 曲柄摇杆机构动画演示 Crank Rocker Animation(Crank Rocker mechanism Animation Crank Rocker Animation)
- C Primer Plus第6版中文版代码和练习答案 C primer plus 第六版 编程练习答案(C Primer Plus sixth version of the programming exercise answer)
文件名称:Q1
介绍说明--下载内容来自于网络,使用问题请自行百度
2类分类高斯模型
每个类是由一个单一的多元高斯分布的3-D建模
显示如何估计高斯均值向量和协方差矩阵的最大似然(ML)估计的基础上为每个类。
meanA和meanB代表每个类的均值,varA和varB的的代表每个类的协方差矩阵.-2-class classifier with Gaussian Models
Each class is modelled by a single 3-D multivariate Gaussian distribution
Show how to estimate Gaussian mean vector and covariance matrix for each class based on the Maximum likelihood (ML) estimation.
meanA and meanB represent each class s mean vector respectively while varA and varB represent each class s convariance matrix respectively
每个类是由一个单一的多元高斯分布的3-D建模
显示如何估计高斯均值向量和协方差矩阵的最大似然(ML)估计的基础上为每个类。
meanA和meanB代表每个类的均值,varA和varB的的代表每个类的协方差矩阵.-2-class classifier with Gaussian Models
Each class is modelled by a single 3-D multivariate Gaussian distribution
Show how to estimate Gaussian mean vector and covariance matrix for each class based on the Maximum likelihood (ML) estimation.
meanA and meanB represent each class s mean vector respectively while varA and varB represent each class s convariance matrix respectively
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Q1.m
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
