文件名称:data
介绍说明--下载内容来自于网络,使用问题请自行百度
Particle filters are often used for tracking objects within a
scene. As the prediction model of a particle filter is often
implemented using basic movement predictions such as ran-
domwalk,constantvelocityoracceleration,thesemodelswill
usually be incorrect. Therefore, this paper proposes a new
approach, based on a Canonical Correlation Analysis (CCA)
tracking method which provides an object specific motion
model. This model is used to construct a proposal distribu-
tion of the prediction model which predicts new states, in-
creasing the robustness of the particle filter. Results confirm
anincreaseinaccuracycomparedtostate-of-the-artmethods.
scene. As the prediction model of a particle filter is often
implemented using basic movement predictions such as ran-
domwalk,constantvelocityoracceleration,thesemodelswill
usually be incorrect. Therefore, this paper proposes a new
approach, based on a Canonical Correlation Analysis (CCA)
tracking method which provides an object specific motion
model. This model is used to construct a proposal distribu-
tion of the prediction model which predicts new states, in-
creasing the robustness of the particle filter. Results confirm
anincreaseinaccuracycomparedtostate-of-the-artmethods.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
paper_VCIP12_25_final_final.pdf
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。