- 龙格库塔求解微分方程数值解 工程中很多的地方用到龙格库塔求解微分方程的数值解
- NodeBlog cnodejs 实现的博客应用
- matlab 语音识别MATLAB代码
- imageenhancement.ZIP This document contains details about image enhancement techniques
- MUD-parthi Adaptive Filter (Least Mean Square) algorithm performance verification in MATLAB tool.
- CNCSimulation 本程序为CNC(数控加工)仿真程序
文件名称:image-feature
-
所属分类:
- 标签属性:
- 上传时间:2013-11-11
-
文件大小:968.02kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
把 SIFT 算法应用在牙齿模型图像上,检测牙齿图像的特征点。 方法:首先采用高斯差分算子 DoG 搜索整个图
像的尺度和位置信息,从而确定具有代表性尺度、方向的特征点。基于其稳定性选择关键点,得到一个详细的模型以确定每个候
选点的合适位置和范围。基于局部图像梯度方向信息将方向矢量和关键点对应起来。在选定范围内的每个关键点周边区域测量
局部图像梯度,并采用 KNN 算法进行特征匹配。 结果:通过大量的实验和与其他特征提取方法相比较,该方法能有效地检测牙
齿模型图像的特征,并为牙齿模型三维重建提供有效的参数。-SIFT algorithm is applied to the teeth of the model image, the image feature point detecting teeth. Methods: DoG Gaussian differential operator to search the entire image the scale and location information, to determine a representative scale, the direction of the feature point. Select the key points based on their stability, to get a detailed model to determine the appropriateness of each candidate point location and extent. Information based on local image gradient direction and key points of the direction vectors correspond. Within the selected area around each critical point of measuring the local image gradient, and using KNN algorithm for feature matching. Results: Through a lot of experiments with other feature extraction methods and compare the proposed method can effectively detect tooth model image feature, and to provide an effective three-dimensional reconstruction tooth model parameters.
像的尺度和位置信息,从而确定具有代表性尺度、方向的特征点。基于其稳定性选择关键点,得到一个详细的模型以确定每个候
选点的合适位置和范围。基于局部图像梯度方向信息将方向矢量和关键点对应起来。在选定范围内的每个关键点周边区域测量
局部图像梯度,并采用 KNN 算法进行特征匹配。 结果:通过大量的实验和与其他特征提取方法相比较,该方法能有效地检测牙
齿模型图像的特征,并为牙齿模型三维重建提供有效的参数。-SIFT algorithm is applied to the teeth of the model image, the image feature point detecting teeth. Methods: DoG Gaussian differential operator to search the entire image the scale and location information, to determine a representative scale, the direction of the feature point. Select the key points based on their stability, to get a detailed model to determine the appropriateness of each candidate point location and extent. Information based on local image gradient direction and key points of the direction vectors correspond. Within the selected area around each critical point of measuring the local image gradient, and using KNN algorithm for feature matching. Results: Through a lot of experiments with other feature extraction methods and compare the proposed method can effectively detect tooth model image feature, and to provide an effective three-dimensional reconstruction tooth model parameters.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于SIFT算法的图像特征点提取和匹配研究_王心醉.caj
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
