文件名称:LS-SVMlab1.5
介绍说明--下载内容来自于网络,使用问题请自行百度
LMS 优化支持向量机 支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。-LMS Support Vector Machine optimization SVM method is based on the VC dimension theory and structural risk minimization principle on the basis of statistical learning theory, according to information in the limited sample complexity of the model (ie, the accuracy of a particular learning training samples) and learning ability (ie, error seek to identify any sample between the ability to) the best compromise, in order to obtain the best generalization ability.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
LS-SVMlab1.5/
LS-SVMlab1.5/AFE.m
LS-SVMlab1.5/MLP_kernel.m
LS-SVMlab1.5/RBF_kernel.m
LS-SVMlab1.5/bay_errorbar.m
LS-SVMlab1.5/bay_initlssvm.m
LS-SVMlab1.5/bay_lssvm.m
LS-SVMlab1.5/bay_lssvmARD.m
LS-SVMlab1.5/bay_modoutClass.m
LS-SVMlab1.5/bay_optimize.m
LS-SVMlab1.5/bay_rr.m
LS-SVMlab1.5/changelssvm.m
LS-SVMlab1.5/code.m
LS-SVMlab1.5/code_ECOC.m
LS-SVMlab1.5/code_MOC.m
LS-SVMlab1.5/code_OneVsAll.m
LS-SVMlab1.5/code_OneVsOne.m
LS-SVMlab1.5/codedist_bay.m
LS-SVMlab1.5/codedist_hamming.m
LS-SVMlab1.5/codedist_loss.m
LS-SVMlab1.5/codelssvm.m
LS-SVMlab1.5/crossvalidate.m
LS-SVMlab1.5/deltablssvm.m
LS-SVMlab1.5/demo_fixedclass.m
LS-SVMlab1.5/demo_fixedsize.m
LS-SVMlab1.5/demo_yinyang.m
LS-SVMlab1.5/democlass.m
LS-SVMlab1.5/demofun.m
LS-SVMlab1.5/demomodel.m
LS-SVMlab1.5/denoise_kpca.m
LS-SVMlab1.5/eign.m
LS-SVMlab1.5/gridsearch.m
LS-SVMlab1.5/initlssvm.asv
LS-SVMlab1.5/initlssvm.m
LS-SVMlab1.5/kentropy.m
LS-SVMlab1.5/kernel_matrix.m
LS-SVMlab1.5/kpca.m
LS-SVMlab1.5/latentlssvm.m
LS-SVMlab1.5/leaveoneout.m
LS-SVMlab1.5/leaveoneout_lssvm.m
LS-SVMlab1.5/lin_kernel.m
LS-SVMlab1.5/linesearch.m
LS-SVMlab1.5/linf.m
LS-SVMlab1.5/lssvm.dll
LS-SVMlab1.5/lssvm1024.dll
LS-SVMlab1.5/lssvm256.dll
LS-SVMlab1.5/lssvm64.dll
LS-SVMlab1.5/lssvmFILE.exe
LS-SVMlab1.5/lssvmFILE.m
LS-SVMlab1.5/lssvmFILE1024.exe
LS-SVMlab1.5/lssvmFILE256.exe
LS-SVMlab1.5/lssvmFILE64.exe
LS-SVMlab1.5/lssvmMATLAB.m
LS-SVMlab1.5/medae.m
LS-SVMlab1.5/misclass.m
LS-SVMlab1.5/mse.m
LS-SVMlab1.5/phitures.dll
LS-SVMlab1.5/plotlssvm.m
LS-SVMlab1.5/poly_kernel.m
LS-SVMlab1.5/postlssvm.m
LS-SVMlab1.5/predict.m
LS-SVMlab1.5/prelssvm.m
LS-SVMlab1.5/rcrossvalidate.m
LS-SVMlab1.5/ridgeregress.m
LS-SVMlab1.5/robustlssvm.m
LS-SVMlab1.5/roc.m
LS-SVMlab1.5/simFILE.exe
LS-SVMlab1.5/simFILE.m
LS-SVMlab1.5/simFILE1024.exe
LS-SVMlab1.5/simFILE256.exe
LS-SVMlab1.5/simFILE64.exe
LS-SVMlab1.5/simclssvm.dll
LS-SVMlab1.5/simclssvm1024.dll
LS-SVMlab1.5/simclssvm256.dll
LS-SVMlab1.5/simclssvm64.dll
LS-SVMlab1.5/simlssvm.asv
LS-SVMlab1.5/simlssvm.m
LS-SVMlab1.5/sparselssvm.m
LS-SVMlab1.5/trainlssvm.m
LS-SVMlab1.5/trimmedmse.m
LS-SVMlab1.5/tunelssvm.m
LS-SVMlab1.5/validate.m
LS-SVMlab1.5/windowize.m
LS-SVMlab1.5/windowizeNARX.m
LS-SVMlab1.5/AFE.m
LS-SVMlab1.5/MLP_kernel.m
LS-SVMlab1.5/RBF_kernel.m
LS-SVMlab1.5/bay_errorbar.m
LS-SVMlab1.5/bay_initlssvm.m
LS-SVMlab1.5/bay_lssvm.m
LS-SVMlab1.5/bay_lssvmARD.m
LS-SVMlab1.5/bay_modoutClass.m
LS-SVMlab1.5/bay_optimize.m
LS-SVMlab1.5/bay_rr.m
LS-SVMlab1.5/changelssvm.m
LS-SVMlab1.5/code.m
LS-SVMlab1.5/code_ECOC.m
LS-SVMlab1.5/code_MOC.m
LS-SVMlab1.5/code_OneVsAll.m
LS-SVMlab1.5/code_OneVsOne.m
LS-SVMlab1.5/codedist_bay.m
LS-SVMlab1.5/codedist_hamming.m
LS-SVMlab1.5/codedist_loss.m
LS-SVMlab1.5/codelssvm.m
LS-SVMlab1.5/crossvalidate.m
LS-SVMlab1.5/deltablssvm.m
LS-SVMlab1.5/demo_fixedclass.m
LS-SVMlab1.5/demo_fixedsize.m
LS-SVMlab1.5/demo_yinyang.m
LS-SVMlab1.5/democlass.m
LS-SVMlab1.5/demofun.m
LS-SVMlab1.5/demomodel.m
LS-SVMlab1.5/denoise_kpca.m
LS-SVMlab1.5/eign.m
LS-SVMlab1.5/gridsearch.m
LS-SVMlab1.5/initlssvm.asv
LS-SVMlab1.5/initlssvm.m
LS-SVMlab1.5/kentropy.m
LS-SVMlab1.5/kernel_matrix.m
LS-SVMlab1.5/kpca.m
LS-SVMlab1.5/latentlssvm.m
LS-SVMlab1.5/leaveoneout.m
LS-SVMlab1.5/leaveoneout_lssvm.m
LS-SVMlab1.5/lin_kernel.m
LS-SVMlab1.5/linesearch.m
LS-SVMlab1.5/linf.m
LS-SVMlab1.5/lssvm.dll
LS-SVMlab1.5/lssvm1024.dll
LS-SVMlab1.5/lssvm256.dll
LS-SVMlab1.5/lssvm64.dll
LS-SVMlab1.5/lssvmFILE.exe
LS-SVMlab1.5/lssvmFILE.m
LS-SVMlab1.5/lssvmFILE1024.exe
LS-SVMlab1.5/lssvmFILE256.exe
LS-SVMlab1.5/lssvmFILE64.exe
LS-SVMlab1.5/lssvmMATLAB.m
LS-SVMlab1.5/medae.m
LS-SVMlab1.5/misclass.m
LS-SVMlab1.5/mse.m
LS-SVMlab1.5/phitures.dll
LS-SVMlab1.5/plotlssvm.m
LS-SVMlab1.5/poly_kernel.m
LS-SVMlab1.5/postlssvm.m
LS-SVMlab1.5/predict.m
LS-SVMlab1.5/prelssvm.m
LS-SVMlab1.5/rcrossvalidate.m
LS-SVMlab1.5/ridgeregress.m
LS-SVMlab1.5/robustlssvm.m
LS-SVMlab1.5/roc.m
LS-SVMlab1.5/simFILE.exe
LS-SVMlab1.5/simFILE.m
LS-SVMlab1.5/simFILE1024.exe
LS-SVMlab1.5/simFILE256.exe
LS-SVMlab1.5/simFILE64.exe
LS-SVMlab1.5/simclssvm.dll
LS-SVMlab1.5/simclssvm1024.dll
LS-SVMlab1.5/simclssvm256.dll
LS-SVMlab1.5/simclssvm64.dll
LS-SVMlab1.5/simlssvm.asv
LS-SVMlab1.5/simlssvm.m
LS-SVMlab1.5/sparselssvm.m
LS-SVMlab1.5/trainlssvm.m
LS-SVMlab1.5/trimmedmse.m
LS-SVMlab1.5/tunelssvm.m
LS-SVMlab1.5/validate.m
LS-SVMlab1.5/windowize.m
LS-SVMlab1.5/windowizeNARX.m
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
