- 《SQL 参考手册》中文版 SQL语言参考手册
- jmf2_0-guide-html Java媒体框架(JMF)使你能够编写出功能强大的多媒体程序
- regarde-ici PING import java.awt.event.* import java.io.BufferedReader import java.io.IOException import java.io.InputStreamReader import java.util.logging.Level import java.util.logging.Logger import javax.swing.JTextArea import javax.swing.SwingWorker
- servo 光斑绘图(两个舵机构成二自由度机械臂
- sklearn-tree-BN-knn 分类器的性能比较与调优: 使用scikit
- 练习JAVA GUI设计和布局设计 :编写一个窗体程序显示日历
文件名称:resolution_gauss_descents
-
所属分类:
- 标签属性:
- 上传时间:2014-08-03
-
文件大小:21.67kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
In numerical analysis, LU decomposition (where LU stands for Lower Upper , and also called LU factorization) factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. The product sometimes includes a permutation matrix as well. The LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using the LU decomposition, and it is also a key step when inverting a matrix, or computing the determinant of a matrix. The LU decomposition was introduced by mathematician Alan Turing.[1]-In numerical analysis, LU decomposition (where LU stands for Lower Upper , and also called LU factorization) factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. The product sometimes includes a permutation matrix as well. The LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using the LU decomposition, and it is also a key step when inverting a matrix, or computing the determinant of a matrix. The LU decomposition was introduced by mathematician Alan Turing.[1]
(系统自动生成,下载前可以参看下载内容)
下载文件列表
resolution_gauss_descents/resolution_gauss_descente.cpp
resolution_gauss_descents/resolution_gauss_descente.docx
resolution_gauss_descents/resolution_gauss_descente.exe
resolution_gauss_descents
resolution_gauss_descents/resolution_gauss_descente.docx
resolution_gauss_descents/resolution_gauss_descente.exe
resolution_gauss_descents
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
