文件名称:MTBoost1
介绍说明--下载内容来自于网络,使用问题请自行百度
Duchi and Singer [24] proposed a boosting method for multi-class classification problems
by utilizing the structural sparsity of model parameters. They claimed that the
method can be generalized for multi-task learning.
by utilizing the structural sparsity of model parameters. They claimed that the
method can be generalized for multi-task learning.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
MTBoost1/Base_Learner_Test.m
MTBoost1/Base_Learner_Train.m
MTBoost1/dataset.txt
MTBoost1/Init.m
MTBoost1/loss_derivative.m
MTBoost1/MTBoost.m
MTBoost1/PreprocessMTData.m
MTBoost1/readme.txt
MTBoost1/WeightedRR.m
MTBoost1
MTBoost1/Base_Learner_Train.m
MTBoost1/dataset.txt
MTBoost1/Init.m
MTBoost1/loss_derivative.m
MTBoost1/MTBoost.m
MTBoost1/PreprocessMTData.m
MTBoost1/readme.txt
MTBoost1/WeightedRR.m
MTBoost1
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
