- Tricubic It is a three dimensional interpolation with tricubic convolution interpolation
- WIFI 解析Xml文件的小例子
- MATLAB-6.5-andSimulink- 高斯白噪声的生成
- synpdf Synopse PDF engine Synopse PDF engine is an Open Source PDF document creation library for Delphi
- ct676 用于建立主成分分析模型
- Debug 通过串口能够实在控制4路的数字光源控制器(A digital light source controller with 4 channels can be controlled through serial port)
文件名称:MATLAB_CODE_TO_GENERATE_A_PSEUDO_NOISE_SEQUENCE.z
介绍说明--下载内容来自于网络,使用问题请自行百度
A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG),[1] is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by a relatively small set of initial values, called the PRNG s seed (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators, pseudorandom number generators are important in practice for their speed in number generation and their reproducibility.[2]
PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable earlier outputs, and more elaborate algorithms, which do not inherit the linearity of simpler PRNGs, are needed.-A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG),[1] is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by a relatively small set of initial values, called the PRNG s seed (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators, pseudorandom number generators are important in practice for their speed in number generation and their reproducibility.[2]
PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable earlier outputs, and more elaborate algorithms, which do not inherit the linearity of simpler PRNGs, are needed.
PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable earlier outputs, and more elaborate algorithms, which do not inherit the linearity of simpler PRNGs, are needed.-A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG),[1] is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by a relatively small set of initial values, called the PRNG s seed (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators, pseudorandom number generators are important in practice for their speed in number generation and their reproducibility.[2]
PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable earlier outputs, and more elaborate algorithms, which do not inherit the linearity of simpler PRNGs, are needed.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
MATLAB_CODE_TO_GENERATE_A_PSEUDO_NOISE_SEQUENCE_2015_10_13_11_00_03_692.docx
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
