文件名称:Mahalanobis
介绍说明--下载内容来自于网络,使用问题请自行百度
马氏距离是一种有效地计算两个样本集之间相似度的算法(数据之间协方差距离),与欧式距离相比,它考虑了各种特征之间的联系。本实验旨在通过给出的样本数据,设计一个最小马氏距离分类器并对测试点进行分类,然后将其与最小欧式距离分类器进行比较,实验得出当协方差矩阵为单位阵时,最小马氏距离分类器将与最小欧式距离分类器等价。-Markov distance is an effective method to compute the similarity between the two samples (data covariance distance), compared with the Euclidean distance, which takes into account the link between different characteristics. This experiment aimed at through the given sample data, design a minimum Mahalanobis distance classifier and classify the test points, and then compare it with the minimum Euclidean distance classifier. Experimental results showed that when the covariance matrix is a unit matrix, minimum Mahalanobis distance classifier with the minimum Euclidean distance classifier equivalent.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Mahalanobis.m
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
