文件名称:BPNN
介绍说明--下载内容来自于网络,使用问题请自行百度
前向型神经网络(BPNN)
1.首先使用随机函数对每一层间的连接权值矩阵和偏置向量进行随机初始化.
2.依次使用一个训练样本对网络进行训练,并按照上面的公式计算每个样本的Δti,t 1,...,T− 1
3.训练p个样本后(一次batch),按照更新方程对W与b进行更新.
4.重复步骤2~3,直到误差小于设定的阈值或者达到设定的batch次数.-Forward neural network (BPNN) 1. First, using a random function of connection weight matrices and bias vectors between each layer of random initialization. 2 in order to use a training sample to train the network, and calculated according to the above formula Δti each sample, t 1, ..., T-1 3. training p samples after (a batch), according to the update equation of W and b are updated. 4. repeat steps 2-3 until the error is less than set threshold or reach the batch number of the set.
1.首先使用随机函数对每一层间的连接权值矩阵和偏置向量进行随机初始化.
2.依次使用一个训练样本对网络进行训练,并按照上面的公式计算每个样本的Δti,t 1,...,T− 1
3.训练p个样本后(一次batch),按照更新方程对W与b进行更新.
4.重复步骤2~3,直到误差小于设定的阈值或者达到设定的batch次数.-Forward neural network (BPNN) 1. First, using a random function of connection weight matrices and bias vectors between each layer of random initialization. 2 in order to use a training sample to train the network, and calculated according to the above formula Δti each sample, t 1, ..., T-1 3. training p samples after (a batch), according to the update equation of W and b are updated. 4. repeat steps 2-3 until the error is less than set threshold or reach the batch number of the set.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
BPNN.py
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
