文件名称:2808-14159-1-PB
-
所属分类:
- 标签属性:
- 上传时间:2017-05-29
-
文件大小:685.32kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
In this paper, we systematically explore feature definition and selection strategies for sentiment polarity classification. We begin by exploring basic questions, such
as whether to use stemming, term frequency versus binary weighting, negation-enriched features, n-grams or
phrases. We then move onto more complex aspects
including feature selection using frequency-based vocabulary trimming, part-of-speech and lexicon selection (three types of lexicons), as well as using expected Mutual Information (MI). Using three product
and movie review datasets of various sizes, we show,
for example, that some techniques are more beneficial
for larger datasets than the smaller. A classifier trained
on only few features ranked high by MI outperformed
one trained on all features in large datasets, yet in small
dataset this did not prove to be true. Finally, we perform a space and computation cost analysis to further
understand the merits of various feature types.
as whether to use stemming, term frequency versus binary weighting, negation-enriched features, n-grams or
phrases. We then move onto more complex aspects
including feature selection using frequency-based vocabulary trimming, part-of-speech and lexicon selection (three types of lexicons), as well as using expected Mutual Information (MI). Using three product
and movie review datasets of various sizes, we show,
for example, that some techniques are more beneficial
for larger datasets than the smaller. A classifier trained
on only few features ranked high by MI outperformed
one trained on all features in large datasets, yet in small
dataset this did not prove to be true. Finally, we perform a space and computation cost analysis to further
understand the merits of various feature types.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
2808-14159-1-PB.pdf
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。