文件名称:kmeans
介绍说明--下载内容来自于网络,使用问题请自行百度
K-means算法是集简单和经典于一身的基于距离的聚类算法
采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。
该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。(K-means algorithm is a distance based clustering algorithm which is simple and classic.
Distance is used as a similarity evaluation index, that is, the closer the distance between the two objects is, the greater the similarity is.
The algorithm considers that clusters are composed of objects close to each other. Therefore, a compact and independent cluster is the ultimate goal.)
采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。
该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。(K-means algorithm is a distance based clustering algorithm which is simple and classic.
Distance is used as a similarity evaluation index, that is, the closer the distance between the two objects is, the greater the similarity is.
The algorithm considers that clusters are composed of objects close to each other. Therefore, a compact and independent cluster is the ultimate goal.)
相关搜索: kmeans算法
(系统自动生成,下载前可以参看下载内容)
下载文件列表
| 文件名 | 大小 | 更新时间 |
|---|---|---|
| kmeans | 0 | 2018-04-08 |
| kmeans\data.txt | 80 | 2018-04-08 |
| kmeans\data.txt~ | 80 | 2014-05-26 |
| kmeans\kmeans.py | 2763 | 2018-04-08 |
| kmeans\kmeans.pyc | 2649 | 2014-05-26 |
| kmeans\kmeans.py~ | 2749 | 2014-05-26 |
| kmeans\test.py | 593 | 2018-04-08 |
| kmeans\test.py~ | 599 | 2014-05-26 |
| kmeans\__pycache__ | 0 | 2018-04-06 |
| kmeans\__pycache__\kmeans.cpython-35.pyc | 2200 | 2018-04-06 |
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
