- radio 认知无线电的频谱分配以及其实现算法和功能实现
- tft 好东西
- framework_dx The ProceduralFire sample demonstrates the use of pixel shaders to procedurally generate natural phenomena such as fire. Rendering fire as an animation has the disadvantages of looking unrealistic due to the cycling animation and of requiring a lot of texture memory to store the frames of animation. In addition to this
- sea scalable encryption algorithm
- ym_java-IPMsg.src_java Java局域网通信——飞鸽传书源代码
- 1231412312412 小波光流 用于将小波的多尺度和光流进行结合
文件名称:SRGTSToolbox
介绍说明--下载内容来自于网络,使用问题请自行百度
SURROGATES工具箱是一个多维函数逼近和优化方法的通用MATLAB库。当前版本包括以下功能:
实验设计:中心复合设计,全因子设计,拉丁超立方体设计,D-optimal和maxmin设计。
代理:克里金法,多项式响应面,径向基神经网络和支持向量回归。
错误和交叉验证的分析:留一法和k折交叉验证,以及经典的错误分析(确定系数,标准误差;均方根误差等;)。
基于代理的优化:高效的全局优化(EGO)算法。
其他能力:通过安全裕度进行全局敏感性分析和保守替代。(SURROGATES Toolbox is a general-purpose MATLAB library of multidimensional function approximation and optimization methods. The current version includes the following capabilities:
Design of experiments: central composite design, full factorial design, Latin hypercube design, D-optimal and maxmin designs.
Surrogates: kriging, polynomial response surface, radial basis neural network, and support vector regression.
Analysis of error and cross validation: leave-one-out and k-fold cross-validation, and classical error analysis (coefficient of determination, standard error; root mean square error; and others).
Surrogate-based optimization: efficient global optimization (EGO) algorithm.
Other capabilities: global sensitivity analysis and conservative surrogates via safety margin.)
实验设计:中心复合设计,全因子设计,拉丁超立方体设计,D-optimal和maxmin设计。
代理:克里金法,多项式响应面,径向基神经网络和支持向量回归。
错误和交叉验证的分析:留一法和k折交叉验证,以及经典的错误分析(确定系数,标准误差;均方根误差等;)。
基于代理的优化:高效的全局优化(EGO)算法。
其他能力:通过安全裕度进行全局敏感性分析和保守替代。(SURROGATES Toolbox is a general-purpose MATLAB library of multidimensional function approximation and optimization methods. The current version includes the following capabilities:
Design of experiments: central composite design, full factorial design, Latin hypercube design, D-optimal and maxmin designs.
Surrogates: kriging, polynomial response surface, radial basis neural network, and support vector regression.
Analysis of error and cross validation: leave-one-out and k-fold cross-validation, and classical error analysis (coefficient of determination, standard error; root mean square error; and others).
Surrogate-based optimization: efficient global optimization (EGO) algorithm.
Other capabilities: global sensitivity analysis and conservative surrogates via safety margin.)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
| 文件名 | 大小 | 更新时间 |
|---|---|---|
| SRGTSToolbox\docs | 0 | 2011-07-15 |
| SRGTSToolbox\docs\SRGTSToolbox.pdf | 142816 | 2011-07-15 |
| SRGTSToolbox\does | 0 | 2011-07-15 |
| SRGTSToolbox\does\private | 0 | 2011-07-15 |
| SRGTSToolbox\does\private\srgtsESEAOLHSdesign.m | 6753 | 2011-04-25 |
| SRGTSToolbox\does\private\srgtsGAOLHSdesign.m | 9098 | 2011-04-25 |
| SRGTSToolbox\does\private\srgtsGetDoptimal.m | 2480 | 2011-07-14 |
| SRGTSToolbox\does\private\srgtsGetMaxMin.m | 1405 | 2011-07-14 |
| SRGTSToolbox\does\srgtsDOEFullFactorial.m | 3570 | 2011-07-14 |
| SRGTSToolbox\does\srgtsDOELHS.m | 2253 | 2011-07-14 |
| SRGTSToolbox\does\srgtsDOEMinDistCriterion.m | 2470 | 2011-07-14 |
| SRGTSToolbox\does\srgtsDOEOLHS.m | 3939 | 2011-04-22 |
| SRGTSToolbox\does\srgtsDOEPHIpCriterion.m | 2692 | 2011-04-22 |
| SRGTSToolbox\does\srgtsDOESubSample.m | 6394 | 2011-07-14 |
| SRGTSToolbox\does\srgtsDOETPLHS.m | 9400 | 2011-07-14 |
| SRGTSToolbox\does\srgtsScaleVariable.m | 2652 | 2011-07-14 |
| SRGTSToolbox\examples | 0 | 2011-07-15 |
| SRGTSToolbox\examples\conservative | 0 | 2011-07-15 |
| SRGTSToolbox\examples\conservative\example.m | 1527 | 2011-07-14 |
| SRGTSToolbox\examples\conservative\sasena.m | 459 | 2010-07-08 |
| SRGTSToolbox\examples\contourestimation | 0 | 2011-07-15 |
| SRGTSToolbox\examples\contourestimation\braninhoo.m | 175 | 2011-05-23 |
| SRGTSToolbox\examples\contourestimation\example_egra.m | 1690 | 2011-07-15 |
| SRGTSToolbox\examples\contourestimation\example_egrabeliever.m | 1730 | 2011-07-15 |
| SRGTSToolbox\examples\contourestimation\example_msegra.m | 2060 | 2011-07-15 |
| SRGTSToolbox\examples\crossvalidation | 0 | 2011-07-15 |
| SRGTSToolbox\examples\crossvalidation\example.m | 804 | 2011-05-11 |
| SRGTSToolbox\examples\crossvalidation\sasena.m | 459 | 2010-07-08 |
| SRGTSToolbox\examples\doe | 0 | 2011-07-15 |
| SRGTSToolbox\examples\doe\example.m | 2469 | 2011-07-14 |
| SRGTSToolbox\examples\gsa | 0 | 2011-07-15 |
| SRGTSToolbox\examples\gsa\example.m | 1225 | 2011-07-12 |
| SRGTSToolbox\examples\gsa\sasena.m | 459 | 2010-07-08 |
| SRGTSToolbox\examples\onlymatlab | 0 | 2011-07-15 |
| SRGTSToolbox\examples\onlymatlab\example_rbnn.m | 1190 | 2011-07-13 |
| SRGTSToolbox\examples\onlymatlab\example_svr.m | 1187 | 2011-07-13 |
| SRGTSToolbox\examples\onlymatlab\forrester.m | 78 | 2011-06-02 |
| SRGTSToolbox\examples\sbdo | 0 | 2011-07-15 |
| SRGTSToolbox\examples\sbdo\example_ego.m | 1154 | 2011-07-15 |
| SRGTSToolbox\examples\sbdo\example_ego_gp.m | 1160 | 2011-05-20 |
| SRGTSToolbox\examples\sbdo\example_krgbeliever.m | 1102 | 2011-07-15 |
| SRGTSToolbox\examples\sbdo\example_krgbeliever_gp.m | 1108 | 2011-05-26 |
| SRGTSToolbox\examples\sbdo\example_mppi.m | 1081 | 2011-07-15 |
| SRGTSToolbox\examples\sbdo\example_mppi_gp.m | 1087 | 2011-05-20 |
| SRGTSToolbox\examples\sbdo\example_msego.m | 1365 | 2011-07-15 |
| SRGTSToolbox\examples\sbdo\example_msego_gp.m | 1356 | 2011-07-12 |
| SRGTSToolbox\examples\sbdo\sasena.m | 459 | 2010-07-08 |
| SRGTSToolbox\examples\surrogate | 0 | 2011-07-15 |
| SRGTSToolbox\examples\surrogate\example_gp.m | 1355 | 2011-07-14 |
| SRGTSToolbox\examples\surrogate\example_gp_noise.m | 1681 | 2011-07-14 |
| SRGTSToolbox\examples\surrogate\example_krg.m | 1327 | 2011-07-14 |
| SRGTSToolbox\examples\surrogate\example_prs.m | 1333 | 2011-07-14 |
| SRGTSToolbox\examples\surrogate\example_rbf.m | 1093 | 2011-07-14 |
| SRGTSToolbox\examples\surrogate\example_shep.m | 1096 | 2011-07-14 |
| SRGTSToolbox\examples\surrogate\example_was.m | 2263 | 2011-07-14 |
| SRGTSToolbox\examples\surrogate\forrester.m | 78 | 2011-06-02 |
| SRGTSToolbox\examples\xvfitting | 0 | 2011-07-15 |
| SRGTSToolbox\examples\xvfitting\example_gp.m | 1299 | 2011-07-12 |
| SRGTSToolbox\examples\xvfitting\example_krg.m | 1295 | 2011-07-12 |
| SRGTSToolbox\examples\xvfitting\example_rbf.m | 1195 | 2011-07-12 |
| SRGTSToolbox\examples\xvfitting\forrester.m | 78 | 2011-06-02 |
| SRGTSToolbox\matlabbooster | 0 | 2011-07-15 |
| SRGTSToolbox\matlabbooster\does | 0 | 2011-07-15 |
| SRGTSToolbox\matlabbooster\does\srgtsDOECentralComposite.m | 5388 | 2011-04-22 |
| SRGTSToolbox\matlabbooster\does\srgtsDOELHSFilling.m | 10737 | 2011-04-22 |
| SRGTSToolbox\matlabbooster\surrogates | 0 | 2011-07-15 |
| SRGTSToolbox\matlabbooster\surrogates\rbnn | 0 | 2011-07-15 |
| SRGTSToolbox\matlabbooster\surrogates\rbnn\private | 0 | 2011-07-15 |
| SRGTSToolbox\matlabbooster\surrogates\rbnn\private\srgtsnewrb.m | 6841 | 2010-07-08 |
| SRGTSToolbox\matlabbooster\surrogates\rbnn\srgtsRBNNEvaluate.m | 1811 | 2011-07-14 |
| SRGTSToolbox\matlabbooster\surrogates\rbnn\srgtsRBNNFit.m | 1796 | 2011-07-14 |
| SRGTSToolbox\matlabbooster\surrogates\rbnn\srgtsRBNNSetOptions.m | 3505 | 2011-07-14 |
| SRGTSToolbox\matlabbooster\surrogates\svm | 0 | 2011-07-15 |
| SRGTSToolbox\matlabbooster\surrogates\svm\srgtsSVCEvaluate.m | 2001 | 2011-07-14 |
| SRGTSToolbox\matlabbooster\surrogates\svm\srgtsSVCFit.m | 2516 | 2011-07-14 |
| SRGTSToolbox\matlabbooster\surrogates\svm\srgtsSVCSetOptions.m | 5007 | 2011-07-14 |
| SRGTSToolbox\matlabbooster\surrogates\svm\srgtsSVREvaluate.m | 1976 | 2011-07-14 |
| SRGTSToolbox\matlabbooster\surrogates\svm\srgtsSVRFit.m | 2847 | 2011-07-14 |
| SRGTSToolbox\matlabbooster\surrogates\svm\srgtsSVRSetOptions.m | 6041 | 2011-07-14 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn | 0 | 2011-07-15 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\mexfiles | 0 | 2011-07-15 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\mexfiles\compiled | 0 | 2011-07-15 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\mexfiles\compiled\svmgunn_qp.dll | 18432 | 2010-07-08 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\mexfiles\pr_loqo.c | 16786 | 2011-05-09 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\mexfiles\pr_loqo.h | 2388 | 2010-07-08 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\mexfiles\qp.c | 7256 | 2011-05-09 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\private | 0 | 2011-07-15 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\private\svmgunn_kernelmatrix.m | 3201 | 2011-05-11 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\private\svmgunn_nobias.m | 421 | 2010-09-30 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\svcgunn_error.m | 837 | 1998-08-21 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\svcgunn_evaluate.m | 1452 | 2011-05-11 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\svcgunn_fit.m | 2117 | 2011-05-11 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\svrgunn_error.m | 1000 | 2011-05-11 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\svrgunn_evaluate.m | 846 | 2011-05-11 |
| SRGTSToolbox\matlabbooster\surrogates\svm\svmgunn\svrgunn_fit.m | 4216 | 2011-05-11 |
| SRGTSToolbox\octavebooster | 0 | 2011-07-15 |
| SRGTSToolbox\octavebooster\statistics | 0 | 2011-07-15 |
| SRGTSToolbox\octavebooster\statistics\ecdf.m | 1630 | 2011-04-23 |
| SRGTSToolbox\sbdo | 0 | 2011-07-15 |
| SRGTSToolbox\sbdo\criteria | 0 | 2011-07-15 |
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
