- 遗传算法和神经网络 详细介绍c++算法
- gdb Summary of The purpose of a debugger such as is to allow you to see what is going on “inside” another program while it executes—or what another program was doing at the moment it crashed. can do four main kinds of things (plus other things in support of these) to help you catch bugs in the act: • Start your program
- SNMP 计算机网络编程简单实现计算机网络编程简单实现
文件名称:自适应神经网络在确定落煤残存瓦斯量中的应用
-
所属分类:
- 标签属性:
- 上传时间:2008-10-13
-
文件大小:58.82kb
-
已下载:1次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
落煤残存瓦斯量的确定是采掘工作面瓦斯涌出量预测的重要环节,它直接影响着采掘工作面瓦斯涌出量预测的精度,并与煤的变质程度、落煤粒度、原始瓦斯含量、暴露时间等影响因素呈非线性关系。人工神经网络具有表示任意非线性关系和学习的能力,是解决复杂非线性、不确定性和时变性问题的新思想和新方法。基于此,作者提出自适应神经网络的落煤残存瓦斯量预测模型,并结合不同矿井落煤残存瓦斯量的实际测定结果进行验证研究。结果表明,自适应调整权值的变步长BP神经网络模型预测精度高,收敛速度快 该预测模型的应用可为采掘工作面瓦斯涌出量的动态预测提供可靠的基础数据,为采掘工作面落煤残存瓦斯量的确定提出了一种全新的方法和思路。-charged residual coal gas is to determine the volume of mining gas emission rate forecast an important link, which directly affect mining gas emission rate forecast accuracy, and with coal metamorphism, loading coal particle size, the original gas content, exposure time and other factors nonlinear relationship. Artificial neural networks have expressed arbitrary nonlinear relationships and the ability to solve complex nonlinear, time-varying uncertainty and the new ideas and new approaches. Based on this, the author of adaptive neural network loading coal residual gas production forecast model, and a combination of different loading coal mine gas remnants of the actual test results of research. Results show that the adaptive value of the right to change step BP neural network model predict
(系统自动生成,下载前可以参看下载内容)
下载文件列表
自适应神经网络在确定落煤残存瓦斯量中的应用.CAJ
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。