- 基于SQL的购物车(包含文件上传下载) 基于SQL的购物车实现
- VCWinSockProgramming 1. WinSock学习笔记(一) 2 2. WinSock学习笔记(二) 11 3. 使用CSockets进行文件传送 17 4. 基于UDP的网络通迅程序 19 5. 点对点多线程断点续传的实现 22 6. Windows Socket 网络编程(一) 34 7. Windows Socket 网络编程(二) 36 8. Windows Sockets 网络编程(三) 40 9. TCP实现P2P通信(TCP穿越NAT/TCP打洞) 44 10. 深入 CSocket 编程之阻塞和非阻塞模式 57
- listview2 图形文本填充列表框的示例代码
- wlwj 把网络文件当作本地文件来读
- FileApplication2 基于.Net的字符处理方法
- EXERCISE7 ssd7参考答案练习三
文件名称:SVM_SteveGunn.向量机的基本理论
介绍说明--下载内容来自于网络,使用问题请自行百度
支持向量机的基本理论是从二类分类问题提出的,常用的核函数有:多项式、径向基、Sigmoid型。对于同一组数据选择不同的核函数,基本上都可以得到相近的训练效果。,Support vector machine' s basic theory is the question of second-class classification, commonly used kernel functions include: polynomial, radial basis, Sigmoid type. For the same set of data to select a different kernel function, can be basically similar to the results of training.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
SVM_SteveGunn/binomial.m
SVM_SteveGunn/centrefig.m
SVM_SteveGunn/cmap.mat
SVM_SteveGunn/Contents.m
SVM_SteveGunn/Examples/Classification/iris1v23.mat
SVM_SteveGunn/Examples/Classification/iris2v13.mat
SVM_SteveGunn/Examples/Classification/iris3v12.mat
SVM_SteveGunn/Examples/Classification/linsep.mat
SVM_SteveGunn/Examples/Classification/nlinsep.mat
SVM_SteveGunn/Examples/Regression/example.mat
SVM_SteveGunn/Examples/Regression/sinc.mat
SVM_SteveGunn/Examples/Regression/titanium.mat
SVM_SteveGunn/nobias.m
SVM_SteveGunn/Optimiser/Makefile
SVM_SteveGunn/Optimiser/pr_loqo.c
SVM_SteveGunn/Optimiser/pr_loqo.h
SVM_SteveGunn/Optimiser/qp.c
SVM_SteveGunn/Optimiser/qp.dll
SVM_SteveGunn/qp.dll
SVM_SteveGunn/README
SVM_SteveGunn/README.txt
SVM_SteveGunn/softmargin.m
SVM_SteveGunn/svc.m
SVM_SteveGunn/svcerror.m
SVM_SteveGunn/svcinfo.m
SVM_SteveGunn/svcoutput.m
SVM_SteveGunn/svcplot.m
SVM_SteveGunn/svdatanorm.m
SVM_SteveGunn/svkernel.m
SVM_SteveGunn/svr.asv
SVM_SteveGunn/svr.m
SVM_SteveGunn/svrerror.m
SVM_SteveGunn/svroutput.m
SVM_SteveGunn/svrplot.m
SVM_SteveGunn/svtol.m
SVM_SteveGunn/uiclass.m
SVM_SteveGunn/uiclass.mat
SVM_SteveGunn/uiregress.m
SVM_SteveGunn/uiregress.mat
SVM_SteveGunn/Examples/Classification
SVM_SteveGunn/Examples/Regression
SVM_SteveGunn/Examples
SVM_SteveGunn/Optimiser
SVM_SteveGunn
SVM_SteveGunn/centrefig.m
SVM_SteveGunn/cmap.mat
SVM_SteveGunn/Contents.m
SVM_SteveGunn/Examples/Classification/iris1v23.mat
SVM_SteveGunn/Examples/Classification/iris2v13.mat
SVM_SteveGunn/Examples/Classification/iris3v12.mat
SVM_SteveGunn/Examples/Classification/linsep.mat
SVM_SteveGunn/Examples/Classification/nlinsep.mat
SVM_SteveGunn/Examples/Regression/example.mat
SVM_SteveGunn/Examples/Regression/sinc.mat
SVM_SteveGunn/Examples/Regression/titanium.mat
SVM_SteveGunn/nobias.m
SVM_SteveGunn/Optimiser/Makefile
SVM_SteveGunn/Optimiser/pr_loqo.c
SVM_SteveGunn/Optimiser/pr_loqo.h
SVM_SteveGunn/Optimiser/qp.c
SVM_SteveGunn/Optimiser/qp.dll
SVM_SteveGunn/qp.dll
SVM_SteveGunn/README
SVM_SteveGunn/README.txt
SVM_SteveGunn/softmargin.m
SVM_SteveGunn/svc.m
SVM_SteveGunn/svcerror.m
SVM_SteveGunn/svcinfo.m
SVM_SteveGunn/svcoutput.m
SVM_SteveGunn/svcplot.m
SVM_SteveGunn/svdatanorm.m
SVM_SteveGunn/svkernel.m
SVM_SteveGunn/svr.asv
SVM_SteveGunn/svr.m
SVM_SteveGunn/svrerror.m
SVM_SteveGunn/svroutput.m
SVM_SteveGunn/svrplot.m
SVM_SteveGunn/svtol.m
SVM_SteveGunn/uiclass.m
SVM_SteveGunn/uiclass.mat
SVM_SteveGunn/uiregress.m
SVM_SteveGunn/uiregress.mat
SVM_SteveGunn/Examples/Classification
SVM_SteveGunn/Examples/Regression
SVM_SteveGunn/Examples
SVM_SteveGunn/Optimiser
SVM_SteveGunn
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
