文件名称:rpe
介绍说明--下载内容来自于网络,使用问题请自行百度
Train a two layer neural network with a recursive prediction error
% algorithm ("recursive Gauss-Newton"). Also pruned (i.e., not fully
% connected) networks can be trained.
%
% The activation functions can either be linear or tanh. The network
% architecture is defined by the matrix NetDef , which has of two
% rows. The first row specifies the hidden layer while the second
% specifies the output layer.-Train a two layer neural network with a recursive prediction error algorithm ( recursive Gauss-Newton ). Also pruned (ie, not fully connected) networks can be trained. The activation functions can either be linear or tanh. The network architecture is defined by the matrix NetDef, which has of two rows. The first row specifies the hidden layer while the second specifies the output layer.
% algorithm ("recursive Gauss-Newton"). Also pruned (i.e., not fully
% connected) networks can be trained.
%
% The activation functions can either be linear or tanh. The network
% architecture is defined by the matrix NetDef , which has of two
% rows. The first row specifies the hidden layer while the second
% specifies the output layer.-Train a two layer neural network with a recursive prediction error algorithm ( recursive Gauss-Newton ). Also pruned (ie, not fully connected) networks can be trained. The activation functions can either be linear or tanh. The network architecture is defined by the matrix NetDef, which has of two rows. The first row specifies the hidden layer while the second specifies the output layer.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
rpe.m
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
