- gagongjuxiang 遗传算法工具箱的英文解析
- calculator 用java来求一个算术表达式的值
- SAR-imaging 实现了sar成像的三大算法
- design-media-player-based-on-VLC-SDK 用VC++开发基于VLC SDK的视频播放器
- TWC-2011-061511-101745-New-Trellis-Code-Design-fo In this paper
- neural networks 1.elman神经网络对输入波形进行检测 2.设计具有3个神经元的Hopfield网络 3.建立自适应神经模糊推理系统对非线性函数进行逼近(正弦加滞后) 4.建立自适应神经模糊推理系统对非线性函数进行逼近(正弦多项式) 5.利用模糊C均值聚类方法将一类随机给定的三维数据分为三类(1.Detection of input waveform by elman neural network 2. design a Hopfield network with 3 neurons 3. establish adaptive neuro fuzzy inference system to approximate nonlinear functions (sine plus lag). 4. establish adaptive neuro fuzzy inference system to approximate nonlinear functions (sine polynomials). 5. fuzzy C means clustering method is used to divide a class of randomly given 3D data into three categories.)
文件名称:GTPSO
介绍说明--下载内容来自于网络,使用问题请自行百度
提出一种改进的粒子群优化算法———基于全局劣汰策略的混合粒子群优化算法(GTPSO) 。GTPSO在
保持PSO算法快速收敛的基础上,以郭涛算法(GuoA)的寻优机制确保种群的多样性和算法的坚韧性。数值计
算结果表明,对于高维(维数≥10)复杂非凸多峰函数的数值优化问题, GTPSO算法的计算结果均优于GuoA算
法和粒子群优化算法。-An improved particle swarm optimization algorithm--- poor overall survival strategy based on a mixture of particle swarm optimization (GTPSO). GTPSO while maintaining fast convergence PSO algorithm based on the algorithm to Guo Tao (GuoA) optimization of the mechanism in place to ensure the diversity of the population of the tenacity and algorithms. The numerical results show that for high-dimensional (dimension ≥ 10) the complexity of multi-peak function non-convex numerical optimization problems, GTPSO algorithm results are superior to GuoA algorithms and particle swarm optimization algorithm.
保持PSO算法快速收敛的基础上,以郭涛算法(GuoA)的寻优机制确保种群的多样性和算法的坚韧性。数值计
算结果表明,对于高维(维数≥10)复杂非凸多峰函数的数值优化问题, GTPSO算法的计算结果均优于GuoA算
法和粒子群优化算法。-An improved particle swarm optimization algorithm--- poor overall survival strategy based on a mixture of particle swarm optimization (GTPSO). GTPSO while maintaining fast convergence PSO algorithm based on the algorithm to Guo Tao (GuoA) optimization of the mechanism in place to ensure the diversity of the population of the tenacity and algorithms. The numerical results show that for high-dimensional (dimension ≥ 10) the complexity of multi-peak function non-convex numerical optimization problems, GTPSO algorithm results are superior to GuoA algorithms and particle swarm optimization algorithm.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
一种基于全局劣汰策略的混合粒子群优化算法.pdf
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
