搜索资源列表
catmullClark
- catmullClark细分算法代码,直接运行的结果为一个实例的细分结果-catmullClark subdivision algorithm code directly to the results of the operation of an example of the breakdown of the results
xf
- 二维三角网格细分,并同时建立新的三角网格的拓扑结构-2D triangular mesh subdivision, and at the same time establishing a new triangular mesh topology
dxsczyxs.rar
- 一种基于多项式插值改进的亚像素细分算法. ,Based on polynomial interpolation to improve the sub-pixel subdivision algorithm.
subdivision-method
- 纽约州立大学细分曲面课件,详细介绍了各种曲面细分的原理方法及示例。-SUNY Subdivision courseware, details a variety of surfaces method and example of the principle of subdivision.
Subdivision
- 包括LOD,Compression,Smoothing-Including LOD, Compression, Smoothing
subdivision
- 基于VC++的图形细分,读取obj,off图形文件进行显示,并且可以按照功能设定进行边,点的显示-VC++ based graphical subdivision, reads obj, off to display graphics files, and settings can follow the function side of the display of points
TMG
- 基于Delaunay的三角网格手动剖分辅助器,内有详细介绍。在原有Delaunay三角剖分的基础上加入区域约束,形状判定,动态坐标修改,缩放等功能。-Manual based on Delaunay triangular mesh subdivision aids, with detailed descr iption. Delaunay triangulation in the original basis of the area constraints, determine the shap
Catmull-Clark-
- 设P(m,n)是初始控制点列,即原曲面的点(m行n列)。Q(m,n)是一次细分后得到的曲面的控制节点。 此函数采用Catmull-Clark细分曲面算法,对双三次B样条曲面细分,即m=n=4。 利用我们在13章第四节学过的知识,有公式MQM =SMPM S ,其中M,S可由课件知 构造初始控制点列(p1,p2),其中p1是P的行坐标,p2是P的列坐标 -Let P (m, n) is the initial control point of the column, i.e. th
10Multivariate-refinement-
- 10Multivariate refinement equations and convergence of subdivision schemes HJ97-10Multivariate refinement equations and convergence of subdivision schemes HJ97
Loop
- Loop Subdivision is a method which proposed in 2000 SIGNGRAPH.-Loop Subdivision is a method which proposed in 2000 SIGNGRAPH. It is really useful in Subdivision. And this code is use loop Subdivision to division a triangle mesh. As well, use the open
基于图像的道路裂缝识别算法的研究
- 对于四种未修补裂缝分类问题,研究它们在方向以及分布密度上的差异性来进行裂缝类型 的划分。(For the problem of unrepaired crack classification, we use the differences of them on the crack direction and the distribution for crack classification. Using 2D feature mapping, Delaunay t
