搜索资源列表
MatrixMul
- 矩阵连乘算法,实现几个矩阵相乘的最优顺序,并计算出复杂度-matrix continually multiply algorithm, achieving several matrix multiplication, the optimal sequence and calculated complexity
一元稀疏多项式计数器
- 一元稀疏多项式计算器[加法和乘法] 问题描述: 设计一元系数多项式计数器实现两个多项式间的加法、减法。 基本要求: (1) 输入并建立多项式 (2) 输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……cn,en,其中n是多项式的项数,ci,ei分别为第i项的系数和指数。序列按指数降序排列。 (3) 多项式a和b相加,建立多项式a+b,输出相加的多项式。 (4) 多项式a和b相减,建立多项式a-b,输出相减的多项式。 用带表头结点的单链表存储多项式。 测试数据: (1) (2x+5x8
数据结构距阵运算
- 利用三元组完成距阵的基本运算,包括加法,减法,乘法.数据结构实习题目-using ternary Group completed the basic matrix operations, including addition, subtraction, multiplication. Internship topic data structure
dashujiecheng
- 该源代码利用计算机模拟乘法竖式 计算阶乘 将每位数子保存在用new分配的一长字符数组里 在本人的机子上可计算30000!的精确值 用时近60秒-the source code used a computer simulation multiplication calculation factorial shaft will be preserved for each digit used in the distribution of a new long arrays of characte
高精度数加减乘法
- 高精度数的加减乘法,可以自定义进制,作为类实现,直接使用即可。-precision the number of addition and subtraction multiplication can be defined band, as the category achieved, can be used directly.
算法(strassen和strassen混合算法)
- strassen算法的扩展,可以计算任何偶数阶矩阵的相乘,一般strassen只能计算2的n次方阶(自己编写,英文注释~)-Strassen expansion algorithm can even order any calculation of matrix multiplication, general Strassen only two terms of the n-th-order (to prepare themselves, English Notes ~)
稀疏矩阵运算器加减乘
- 以十字链表表示稀疏矩阵,实现两个矩阵的相加,相减,和相乘的运算.-List said with a crossbow sparse matrix, the matrix to achieve two together, subtraction, multiplication and arithmetic.
数据结构好冬冬
- 哈夫曼编码译码,克鲁斯卡尔算法,魔王语言的解释,一元稀疏多项式相乘,C-Huffman encoding decoding, Kelushikaer algorithm, fiendish language interpretation, one yuan sparse polynomial multiplication, C
multiplyofarrys
- 这是一个矩阵乘法 程序,按要求输入矩阵后可实现矩阵间的叉乘、点乘-This is a matrix multiplication multiplication procedure, as required input matrix matrix would be achieved by the fork, take points
mul
- 在应用中常用矩阵相乘的定义算法对其进行计算。这个算法用到了大量的循环和相乘运算,这使得算法效率不高。而矩阵相乘的计算效率很大程度上的影响了整个程序的运行速度,所以对矩阵相乘算法进行一些改进是必要的。-commonly used in the application of the definition matrix multiplication algorithm for calculation. The algorithm uses a number of cycle and multiplic
Strassen_8
- Strassn关于两个矩阵相乘的算法,同过分治原理把两个n*n的矩阵阶各分解成四个n/2*n/2阶的矩阵,当分解出来的矩阵阶数等于2时,求借各个小矩阵,若阶数大与2,就递归的调用前面方法,直到分解成2*2的子矩阵为止。-Strassn on two matrix multiplication, the algorithm, with the governing principle over two n * n matrix of the band decomposed into 4 n / 2
Strassen11
- 矩阵相乘的Strassen算法,其中 乘积矩阵C = H*H,H =(hij)n*n 1. hij = , i,j=1,…8 2. i,j=1,…12 矩阵H =(hij)n*n自动生成,取小数点后面6位计算 -Strassen matrix multiplication, the algorithm, the product matrix C = H * H, H = (hij) n * n 1. hij =, i, j = 1, ... 2. i, j = 1, ...
duoxianshideyunsuan
- 多项式的加法和乘法运算,是一个数据结构的课程设计,根据数据结构的算法,实现运算,一份完整的课程设计,包括运行结果-polynomial multiplication and addition, a data structure of the curriculum design, according to the data structure algorithms, Operational achieve, a comprehensive program designed to include t
Bint
- 算法与数据结构中的大整数相乘问题,在C#环境下运行的.-algorithm and data structure of the large integer multiplication, in C# environment operates.
vector_metrix_multiplication(MPI)
- 并行编程,利用MPI实现向量与矩阵的乘法运算-Parallel programming using MPI to achieve vector and matrix multiplication
multiplication
- 用线性链表实现两个多项式的相乘,将结果以一般多项式的表示显示出来-Linear chain to achieve the multiplication of two polynomials, the results in general show that the polynomial
Large-integer-multiplication
- 高精度大整数乘法,对于大整数比较方便的输入方法是,按字符型处理,两个成熟存储在字符串数组s1,s2中,计算结果存储在整型数组a中。-Precision large integer multiplication, more convenient for large integer input method is handled by the character, two mature stored in an array of strings s1, s2, the calculation res
multiplication
- 要求采用链表形式,求两个一元多项式的乘积:h3 = h1*h2。函数原型为:void multiplication( NODE * h1, NODE * h2, NODE * h3 )。-Require the use of a linked list, find the product of two one yuan polynomial: h3 = h1* h2. Function prototype: void multiplication (NODE* h1, NODE* h2, NOD
C_one-yuan-polynomial-multiplication
- 这是用C写的一元多项式乘法,输入系数和指数,得到结果的系数和指数-It is written in C one yuan polynomial multiplication, input factors and indices to obtain the results of coefficients and indices
Multiplication-of-the-matrix
- Multiplication of Matrix
