搜索资源列表
NDT1BPnet
- 对非线性动态一阶对象采用bp神经网络进行建模的源程序,经过调试,直接就可以由MATLAB运行!-Of nonlinear dynamic first-order object using bp neural network modeling of the source, after debugging, directly from MATLAB can be run!
NDT1RBFnet
- 对非线性动态一阶对象采用rbf神经网络进行建模的源程序,经过调试,直接就可以由MATLAB运行!-Of nonlinear dynamic first-order object using rbf neural network modeling of source, after debugging, directly from MATLAB can be run!
DTNLBPnet
- 动态一阶改进型BP神经网络对非线性系统的建模程序,直接运行即可!-Dynamic first-order modified BP neural network for nonlinear system modeling procedures can be directly run!
DTNLRBFnet
- 动态一阶改进型RBF神经网络对非线性系统的建模程序,直接运行即可!-Dynamic first-order modified RBF neural network for nonlinear system modeling procedures can be directly run!
ReviewofSVM-basedControlandOnlineTrainingAlgorithm
- 支持向量机以其模型结构简单、较好的推广能力和全局最优解等特点已经被用来进行智能 控制的研究,主要包括采用支持向量机回归的非线性时间序列的建模与预测、系统辨识等建模方 面的研究以及优化控制、学习控制和预测控制等方面的研究以及采用支持向量机的故障诊断的研 究。由于现有SVMR基于二次规划的优化方法不适合控制过程的在线训练,因此出现了对SVMR 在线训练算法的研究。分析了国内外这些研究内容的最新研究进展,旨在探讨归纳支持向量机在控 制领域研究的主要成果和存在的问题,以便为进一步的研
adaptive-genetic-algorithm
- 自适应GA SVM 参数选择算法研究Param eter selection algorithm for support vector machines based on adaptive genetic algorithm 支持向量机是一种非常有前景的学习机器, 它的回归算法已经成功地用于解决非线性函数的逼近问题. 但 是, SVM 参数的选择大多数是凭经验选取, 这种方法依赖于使用者的水平, 这样不仅不能获得最佳的函数逼近效果, 而且采用人工的方法选择 SVM 参数比较浪费
BP2
- 换档品质评价方法的研究是应现代车辆自动变速技术发展需要而提出的前沿研究课 题,其评价过程可视为一个非线性动态系统。BP 神经网络的非线性系统辨识 ,能够逼近任意 一个非线性函数。通过确定换档品质评定指标 ,利用BP网络训练获得的数据样本 ,从而建立 主观、 客观评价标准之间的联系 利用 Mat lab/ Simulink 完成换档品质评价方法的客观描述并 进行仿真。通过与实验结果对比 ,证明这种方法能够有效真实地评价换档品质并与传统主观 评价方法具有很好的一致性。-Shift
PSOTool
- 求解非线性方程组方法有经典算法以及近年来流行的遗传算法.牛顿法及其改进形式,但是此类算法的收敛性在很大程度上依赖于初始点的选择,对于某些非线性方程组容易导致求解失败 为了克服经典算法的缺点,设计了求解非线性方程组的混合遗传算法,但依然对方程组和编码方法有很高要求。PSO是受到鸟群或者鱼群社会行为的启发而形成的一种基于种群的随机优化技术。它是一类随机全局优化技术,通过粒子间的相互作用发现复杂搜索空间中的最优区域。该算法是一种基于群体智能的新型演化计算技术,具有简单易实现、设置参数少、全局优化能力强
SAPSO
- 为了平衡粒子群算法的全局搜索能力和局部改良能力,还可采用非线性的动态惯性权重公式。-In order to balance the global search ability of particle swarm optimization (pso) algorithm and local improvement ability, also can use nonlinear dynamic inertia weight formula.
